Page 131 - Machine Learning for Subsurface Characterization
P. 131

108 Machine learning for subsurface characterization
              5  8  7  6  EPSI_XO_F0 COND_XO_F0 (MM/M) DTC_BHP (us/ft) RLA1 (OHMM)  80.  0.8  1000.  0.  160.  40.  2000.  EPSI_XO_F1 COND_XO_F1 (MM/M) DTS_BHP (us/ft) RLA2 (OHMM)  80.  0.8  1000.  0.  160.  40.  2000.  EPSI_XO_F2 COND_XO_F2 (MM/M) RLA3 (OHMM)  80.  0.8  1000.  0.  2000.  EPSI_XO_F3 COND_XO_F3 (MM/M)  80.  0.8  1000.  0.  Fea
                  0.2  0.2  0.2                                                  Track
                  3.  0.5  6.                                                    RLA3);


              4  RHOZ (G/C3)  VCL_BHP (V/V)  PEFZ (B/E)                          and  RLA2,


                  2.  0.  0.
                  0.4  0.4                                                       (RLA1,


              3  DPHZ (CFCF)  NPOR (CFCF)                                        investigation

                  0.  0.                                                         of
                  150.                                                           depths
                GR_EDTC (GAPI)                                                   six

              2                                                                  the

                  0.                                                             of  out
                                  XX00                              XX00
              1                                                              FIG. 4.2  three  at
   126   127   128   129   130   131   132   133   134   135   136