Page 132 - Machine Learning for Subsurface Characterization
P. 132

108 Machine learning for subsurface characterization


                                                                                 logs.
                  80.  80.  80.  80.
                EPSI_XO_F0  EPSI_XO_F1  EPSI_XO_F2  EPSI_XO_F3
              8                                                                  permittivity-dispersion

                  0.8  1000.  0.8  1000.  0.8  1000.  0.8  1000.
                COND_XO_F0 (MM/M)  COND_XO_F1 (MM/M)  COND_XO_F2 (MM/M)          are  8


              7         COND_XO_F3 (MM/M)                                        Tracks



                  160.  0.  0.  160.  0.  0.                                     and  logs;


              6  DTC_BHP (us/ft)  DTS_BHP (us/ft)

                  40.  40.                                                       conductivity-dispersion
                  2000.  2000.  2000.


              5  RLA1 (OHMM)  RLA2 (OHMM)  RLA3 (OHMM)                       Features and targets for training/testing the SNN model. Track 1 is depth, Track 2 is gamma ray log, Track 3 contains density porosity and neutron porosity logs; Track 4 contains bulk density, volume of clay, and formation photoelectric factor logs; Track 5 contains


                  0.2  0.2  0.2                                                  Track
                  3.  0.5  6.                                                    RLA3);


              4  RHOZ (G/C3)  VCL_BHP (V/V)  PEFZ (B/E)                          and  RLA2,

                  2.  0.  0.
                  0.4  0.4                                                       (RLA1,

              3  DPHZ (CFCF)  NPOR (CFCF)                                        investigation


                  0.  0.                                                         of
                  150.                                                           depths
                GR_EDTC (GAPI)                                                   six

              2                                                                  the


                  0.                                                             of  out
                                  XX00                              XX00
              1                                                              FIG. 4.2  three  at
   127   128   129   130   131   132   133   134   135   136   137