Page 149 - Machine Learning for Subsurface Characterization
P. 149

124 Machine learning for subsurface characterization



                Statistical parameters of conventional and DD logs in Well 1 (G, M, and P indicate zones of good, moderate, and poor
                            0.725   0.016  0.440  0.897  0.017  0.453  1.284   0.357  2.003  1.435  3.215  4.038  0.036  0.324  2.450

                         P

                      Skewness  M  0.527   0.317  0.186  1.270  0.317  0.124  0.432   0.324  1.232  1.705  3.375  3.927   0.082  0.316  1.994






                            0.578   0.538  0.017  1.777  0.538  0.043  0.389  0.382  1.605  2.053  3.279  3.755   0.516   0.103  0.775
                         G


                      (S d /μ)  P  0.372  0.721  0.642  0.235  0.023  0.679  0.053  0.376  0.830  0.962  1.565  1.804  0.110  0.076  1.192

                      variation


                      of  M  0.326  0.548  0.524  0.250  0.021  0.580  0.054  0.440  0.841  1.056  1.488  1.600  0.103  0.076  1.077
                      Coefficient



                         G  0.259  0.420  0.399  0.216  0.019  0.447  0.057  0.619  1.101  1.314  1.647  1.723  0.093  0.077  0.822



                            70.681  0.051  0.074  3.831  2.627  0.097  0.033  26.070  121.421  219.464  410.161  466.832  62.600  106.817  36.961
                  respectively).  (μ)  Mean  77.859  0.061  0.088  3.520  2.611  0.114  0.033  24.039  87.724  142.746  210.112  221.107  64.011  107.945  66.775
                         P




                  performances,  M G  82.745  0.071  0.104  3.163  2.595  0.133  0.033  18.592  55.135  80.439  103.597  106.387  66.614  111.548  106.643







                TABLE 4.4  log-synthesis  GR  DPHZ  NPOR  PEFZ  RHOZ  VCL  RLA0  RLA1  RLA2  RLA3  RLA4  RLA5  DTC  DTS  σ f0
   144   145   146   147   148   149   150   151   152   153   154