Page 199 - Macromolecular Crystallography
P. 199

188  MACROMOLECULAR CRYS TALLOGRAPHY

          using compact sample cassettes and a small-scale robot.  screening of crystals for high-throughput protein crys-
          J. App. Crystallogr. 35, 720–726.           tallography. Acta Crystallogr. D 58, 1519–1522.
        Cohen, A. E., McPhillips, S. E., Song, J. and Miller, M. D.  Kirkpatrick, P. and Baez, A. V. (1948). Formation of optical
          (2005). Automation of high-throughput protein crystal  images by X-rays. J. Opt. Soc. Am. 38, 766–774.
          screening at SSRL. Synchrotron Radiation News 18, 28–35.  Kissinger, C. R., Gehlhaar, D. K. and Fogel, D. B. (1999).
        Collaborative Computational Project, Number 4. (1994).  Rapid automated molecular replacement by evolution-
          The CCP4 Suite: Programs for Protein Crystallography.  ary search. Acta Crystallogr. D 55, 484–491.
          Acta Crystallogr. D 50, 760–763.           Koningsberger, D. C. and Prins, R., ed. (1988). X-ray
        Cowtan, K. (1994). ‘dm’: An automated procedure for  Absorption: Principles, Applications, Techniques of EXAFS,
          phase improvement by density modification. Joint CCP4  SEXAFS and XANES. John Wiley and Sons, New York.
          and ESF-EACBM Newsletter on Protein Crystallography 31,  Kraft, S., Stümpel, J., Becker, P. and Kuetgens, U. (1996).
          34–38.                                      High resolution x-ray absorption spectroscopy with
        Emsley, P. and Cowtan, K. (2004). Coot: model build-  absolute energy calibration for the determination of
          ing tools for molecular graphics. Acta Crystallogr. D 60,  absorption edge energies. Rev. Sci. Instrum. 67, 681–687.
          2126–2132.                                 Lamzin, V. S. and Wilson, K. S. (1993). Automated
        Fujisawa, T., Nishikawa, Y., Yamazaki, H., and Inoko, Y.  refinement of protein models. Acta Crystallogr. D 49,
          (2003). Evaluation and improvements of the Rigaku  129–147.
          imaging plate reader (R-Axis IV++) for the use in syn-  Leslie, A. G. W. (1992). Recent changes to the MOSFLM
          chrotron X-ray solution scattering. J. Appl. Crystallogr.  package for processing film and image plate data. Joint
          36, 535–539.                                CCP4 + ESF-EAMCB Newsletter on Protein Crystallogra-
        Hauptman, H. A. (1997). Shake-and-bake: an algorithm for  phy, 26.
          automatic solution ab initio of crystal structures. Method  Levitt, D. G. (2001). Anew software routine that automates
          Enzymol. 277, 3–13.                         the fitting of protein X-ray crystallographic electron-
        Helliwell, J. I. (1990). Macromolecular Crystallography  density maps. Acta Crystallogr. D 57, 1013–1019.
          with Synchrotron Radiation. Cambridge University Press,  McRee, D. E. (1999). Practical Protein Crystallography, 2nd
          Cambridge.                                  edn. Academic Press, San Diego.
        Henderson, R. (1990). Cryo-protection of protein crys-  Mills, D. M., ed. (2002). Third-Generation Hard X-ray
          tals against radiation damage in election and X-ray  Synchrotron Radiation Sources: Source Properties, Optics,
          diffraction. Proc. R. Soc. Lond. B 241, 6–8.  and Experimental Techniques. John Wiley and Sons,
        Hendrickson, W. A. (1991). Determination of macro-  New York.
          molecular structures from anomalous diffraction of  Morris, A. L., MacArthur, M.W., Hutchinson, E. G. and
          synchrotron radiation. Science, 254, 51–58.  Thornton, J. M. (1992). Stereochemical quality of protein
        Holton, J. M. (2007). XANES measurements of the rate  structure coordinates. Proteins 12, 345–364.
          of radiation damage to selenomethionine side chains.  Muchmore, S. W., Olson, J., Jones, R., Pan, J., Blum, M.,
          J. Synchrotron Rad. 14, 51–72.              Greer, J., Merrick, S. M., Magdalinos, P. and Nienaber,
        Holton, J. and Alber, T. (2004). Automated protein crys-  V.L.(2000).Automatedcrystalmountinganddatacollec-
          tal structure determination using ELVES. PNAS 101,  tion for protein crystallography. Structure 8, R243–R246.
          1537–1542.                                 Murray, J. W., Garman, E. and Ravelli, R. (2004). X-ray
        Hülsen, G., Broennimann, C., Eikenberry, E. F., and  absorption by macromolecular crystals: the effects of
          Wagner, A. (2006). Protein crystallography with a  wavelength and crystal composition on absorbed dose.
          novel large-area pixel detector. J. Appl. Crystallogr. 39,  J. Appl. Crystallogr. 37, 513–522.
          550–557.                                   Murray,  J. W.,  Rudiño-Piñera,  E.,  Owen,  R. L.,
        Jacquamet, L., Ohana, J., Joly, J., Legrand, R., Kahn, R.,  Grininger, M., Ravellid, R. B. G. and Garman, E. F.
          Borel, F., Pirocchi, M., Charrault, P., Carpentier, P. and  (2005). Parameters affecting the X-ray dose absorbed by
          Ferrer, J.-L. (2004). Anew highly integrated sample envi-  macromolecular crystals. J. Synchrotron Rad. 12, 268–275.
          ronment for protein crystallography. Acta Crystallogr. D  Murshudov, G. N., Vagin A.A. and Dodson, E. J.
          60, 888–894.                                (1997). Refinement of macromolecular structures by the
        Jhoti, H. (2004). High-throughput crystallography. In: Pro-  maximum-likelihood method. Acta Crystallogr. D 53,
          tein Crystallography in Drug Discovery, Babine, R. E. and  240–255.
          Abdel-Meguid, S.S., eds. Wiley-VCH Verlag, Weinheim.  Nave, C. and Garman, E. F. (2005). Towards an understand-
        Karain, W. I., Bourenkov, G. P., Blume, H. and Bartunik,  ing of radiation damage in cryocooled macromolecular
          H. D. (2002). Automated mounting, centering and  crystals. J. Synchrotron Rad. 12, 257–260.
   194   195   196   197   198   199   200   201   202   203   204