Page 200 - Macromolecular Crystallography
P. 200
HIGH-THROUGHPUT DATA COLLECTION AT SYNCHROTRONS 189
Otwinowski, Z. (1991). Maximum likelihood refinement Alignment System for Biological Crystallography at a
of heavy atom parameters. Daresbury Study Weekend Synchrotron Source. Structure 12, 537–545.
Proceedings DL/SCI/R32, 80-86. Sweet, R. M. (1998). The technology that enables syn-
Owen, R. L., Rudiño-Piñera, E. and Garman, E. F. chrotron structural biology. Nature Struct. Biol. (syn-
(2006). Experimental determination of the radiation dose chrotron suppl.) 5, 654–656.
limit for cryocooled protein crystals. PNAS 103, 4912– Thorne, R.W., Stum, Z., Kmetko, J., O’Neill, K.andGillilan,
4917. R. (2003). Microfabricated mounts for high-throughput
Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. macromolecular cryocrystallography. J. Appl. Crystallogr.
and Tucker, P. A. (2005). Auto-Rickshaw: an automated 36, 1455–1460.
crystal structure determination platform as an efficient Ueno, G., Hirose, R., Ida, K., Kumasaka, T. and
tool for the validation of an X-ray diffraction experiment. Yamamoto, M. (2004). Sample management system for
Acta Crystallogr. D 61, 449–457. a vast amount of frozen crystals at SPring-8. J. Appl.
Pflugrath, J. W. (1999). The finer things in X-ray diffraction Crystallogr. 37, 867–873.
data collection. Acta Crystallogr. D 55, 1718–1725. Vagin, A. A. and Teplyakov, A. (1997). MOLREP:an
Pohl, E., Ristau, U., Gehrmann, T., Jahn, D., Robrahn, B., automated program for molecular replacement. J. Appl.
Malthan, D., Dobler, H. and Hermes, C. (2004). Automa- Crystallogr. 30, 1022–1025.
tion of the EMBL Hamburg protein crystallography Vaguine, A. A., Richelle, J. and Wodak, S. J. (1999).
beamline BW7B. J. Synchrotron Rad. 11, 372–377. SFCHECK: a unified set of procedures for evaluating
Read, R.J. (2001). Pushing the boundaries of molecular the quality of macromolecular structure-factor data and
replacement with maximum likelihood. Acta Crystallogr. their agreement with the atomic model. Acta Crystallogr.
D 57, 1373–1382. D 55, 191–205.
Schneider, T. R. and Sheldrick, G. M. (2002). Substruc- Vernede, X., Lavault, B., Ohana, J., Nurizzo, D., Joly, J.,
ture solution with SHELXD. Acta Crystallogr. D 58, 1772– Jacquamet, L., Felisaz, F., Cipriani, F. and Bourgeois, D.
1779. (2006). UV laser-excited fluorescence as a tool for the
Smith, J. L. and Thompson, A. (1998). Reactivity of visualization of protein crystals mounted in loops. Acta
selenomethionine – dents in the magic bullet? Structure Crystallogr. D 62, 253–261.
6, 815–819. Vriend, G. (1990). WHAT IF: A molecular modelling and
Snell, E. H., van der Woerd, M. J., Miller, M. D. and Deacon, drug design program. J. Mol. Graph. 8, 52–56.
A. M. (2005). Finding a cold needle in a warm haystack: Winick, H. (1987). Synchrotron radiation. Scientific
infrared imaging applied to locating cryocooled crystals American 257, 88–99.
in loops. J. Appl. Crystallogr. 38, 69–77. Zhang, Z., Sauter, N. K., van den Bedem, H., Snell, G.
Snell, G., Cork, C., Nordmeyer, R., Cornell, E., Meigs, and Deacon, A. M. (2006). Automated diffraction image
G., Yegian, D., Jaklevic, J., Jin, J., Stevens, R. C. and analysis and spot searching for high-throughput crystal
Earnest, T. (2004). Automated Sample Mounting and screening. J. Appl. Crystallogr. 39, 112–119.