Page 200 - Macromolecular Crystallography
P. 200

HIGH-THROUGHPUT DATA COLLECTION AT SYNCHROTRONS  189

        Otwinowski, Z. (1991). Maximum likelihood refinement  Alignment System for Biological Crystallography at a
          of heavy atom parameters. Daresbury Study Weekend  Synchrotron Source. Structure 12, 537–545.
          Proceedings DL/SCI/R32, 80-86.             Sweet, R. M. (1998). The technology that enables syn-
        Owen, R. L., Rudiño-Piñera, E. and Garman, E. F.  chrotron structural biology. Nature Struct. Biol. (syn-
          (2006). Experimental determination of the radiation dose  chrotron suppl.) 5, 654–656.
          limit for cryocooled protein crystals. PNAS 103, 4912–  Thorne, R.W., Stum, Z., Kmetko, J., O’Neill, K.andGillilan,
          4917.                                       R. (2003). Microfabricated mounts for high-throughput
        Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S.  macromolecular cryocrystallography. J. Appl. Crystallogr.
          and Tucker, P. A. (2005). Auto-Rickshaw: an automated  36, 1455–1460.
          crystal structure determination platform as an efficient  Ueno, G., Hirose, R., Ida, K., Kumasaka, T. and
          tool for the validation of an X-ray diffraction experiment.  Yamamoto, M. (2004). Sample management system for
          Acta Crystallogr. D 61, 449–457.            a vast amount of frozen crystals at SPring-8. J. Appl.
        Pflugrath, J. W. (1999). The finer things in X-ray diffraction  Crystallogr. 37, 867–873.
          data collection. Acta Crystallogr. D 55, 1718–1725.  Vagin, A. A. and Teplyakov, A. (1997). MOLREP:an
        Pohl, E., Ristau, U., Gehrmann, T., Jahn, D., Robrahn, B.,  automated program for molecular replacement. J. Appl.
          Malthan, D., Dobler, H. and Hermes, C. (2004). Automa-  Crystallogr. 30, 1022–1025.
          tion of the EMBL Hamburg protein crystallography  Vaguine, A. A., Richelle, J. and Wodak, S. J. (1999).
          beamline BW7B. J. Synchrotron Rad. 11, 372–377.  SFCHECK: a unified set of procedures for evaluating
        Read, R.J. (2001). Pushing the boundaries of molecular  the quality of macromolecular structure-factor data and
          replacement with maximum likelihood. Acta Crystallogr.  their agreement with the atomic model. Acta Crystallogr.
          D 57, 1373–1382.                            D 55, 191–205.
        Schneider, T. R. and Sheldrick, G. M. (2002). Substruc-  Vernede, X., Lavault, B., Ohana, J., Nurizzo, D., Joly, J.,
          ture solution with SHELXD. Acta Crystallogr. D 58, 1772–  Jacquamet, L., Felisaz, F., Cipriani, F. and Bourgeois, D.
          1779.                                       (2006). UV laser-excited fluorescence as a tool for the
        Smith, J. L. and Thompson, A. (1998). Reactivity of  visualization of protein crystals mounted in loops. Acta
          selenomethionine – dents in the magic bullet? Structure  Crystallogr. D 62, 253–261.
          6, 815–819.                                Vriend, G. (1990). WHAT IF: A molecular modelling and
        Snell, E. H., van der Woerd, M. J., Miller, M. D. and Deacon,  drug design program. J. Mol. Graph. 8, 52–56.
          A. M. (2005). Finding a cold needle in a warm haystack:  Winick,  H. (1987).  Synchrotron radiation.  Scientific
          infrared imaging applied to locating cryocooled crystals  American 257, 88–99.
          in loops. J. Appl. Crystallogr. 38, 69–77.  Zhang, Z., Sauter, N. K., van den Bedem, H., Snell, G.
        Snell, G., Cork, C., Nordmeyer, R., Cornell, E., Meigs,  and Deacon, A. M. (2006). Automated diffraction image
          G., Yegian, D., Jaklevic, J., Jin, J., Stevens, R. C. and  analysis and spot searching for high-throughput crystal
          Earnest, T. (2004). Automated Sample Mounting and  screening. J. Appl. Crystallogr. 39, 112–119.
   195   196   197   198   199   200   201   202   203   204   205