Page 273 - Marine Structural Design
P. 273

Chapter 12 A Theory of Nonlinear Finite Element Analysis              249


                  16.  Nedergaard H.  and Pedersen, P.T.  (1986), “Analysis Procedure for Space Frame with
                      Material  and  Geometrical Nonlinearities”, Europe-US  Symposium  -  Finite  Element
                      Methods for Nonlinear Problems, Edited by Bergan, Bathe and Wunderlich, Springer,
                      211 - 230.
                  17.  Przemieniecki,  J.S. (1 968), “Theory of Matrix Struchiral Analysis”, McGraw-Hill Inc.
                  18.  Save, M.A.  and Massonnet, C.E. (1972), “Plastic Analysis and Design of Plates, Shells
                      and Disks”, North-Holland Publishing Company.
                  19.  Symonds,  P.S.  and  Yu,  T.X.  (1985),  “Counter-Intuitive Behavior  in  a  Problem  of
                      Elastic-Plastic Beam Dynamics”, J. Appl. Mech. 52,5 17-522.
                 20.  Ueda,Y.  and  Fujikubo,  M.  (1986),  “Plastic  Collocation Method  Considering Strain
                      Hardening Effects”, Journal of the Society of Naval Architects of Japan, Vol.  160,306 -
                      3 17(in Japanese).
                 21.  Ueda,Y.  and Yao, T.  (1982), “The Plastic Node Method  A New  Method of Plastic
                      Analysis”, Comp. Meths. Appl. Mech. Engrg., 34, 1089 - 1104.
                 22.  Yamada, Y., Yoshimura, N., and Sakurai, T. (1968), ”Plastic Stress-Strain Matrix and its
                      Application for the Solution of Elastic-Plastic Problems by the Finite Element Method”,
                      Int. J. Mech. Sci., Vol. 10, pp. 343-354.
                 23.  Yagawa, G. and Miyazaki, N. (1985), “Heat Induced Stress, Creep and Heat  Transfer
                      Analysis Based on the Finite Element Analysis”, Science Publisher (in Japanese).
                 24.  Yoshimura,S., Chen, K.L. and Atluri, S.N. (1987), “A Study of Two Alternate Tangent
                      Modulus Formulations and Attendant Implicit Algorithms for Creep as  well  as High-
                      Strain-Rate Plasticity”, Int. J .Plasticity, 3,391 - 413.
                 25.  Zienkiewicz, O.C. (1 977), “The Finite Element Method”, McGraw-Hill Book Company.
   268   269   270   271   272   273   274   275   276   277   278