Page 135 - Mathematical Models and Algorithms for Power System Optimization
P. 135

126 Chapter 5

                                   Table 5.1  Mathematical notations—Cont’d
             Notations                                 Descriptions

                             The column vector of branch active power; P bj : the active power of the branch j.
             P b
                         The upper limit column vector of branch active power (specified); P bj : the upper limit of the
             P b
                                                  branch j for active power.
             θ           The column vector of nodes for phase angle; θ : the column vector of nodes for phase angle but
                                                          0

                                                                      θ  0
                                              slack node, after ordered, θ ¼  .
                                                                      0
             R                             The connection matrix of node and branch.
             B 0         The node susceptance transport matrix (the slack node is eliminated); B ij (¼1/x ij ): the mutual
                                                      0        1
                                                           P
                                                      B        C
                               susceptance of node i and j; B ii ¼
                                                      @      B ijA: the self-susceptance of node i.
                                                           j2i
                                                           j6¼i
                                           The diagonal matrix of branch susceptance.
             B b
            5.3.2 Model of Load Curtailment Optimization (LCO)
            (1) Objective function:
                                                   X
                                               min     C i P Ci
                                                   i2N D
            (2) Constraints of LCO model:
                 1. Equality constraints. Power balance constraints (DC power flow):
                    Power balance in the whole grid (no loss).
                                           N       N       N
                                           P       P      P
                    (a) Grid power balance:  P Gi    P Li +  P Ci ¼ 0.
                                           i¼1     i¼1    i¼1
                    (b) Bus power balance: P G  P L +P C ¼Bθ.
                    (c) Branch power balance: P 0 ¼B b Rθ.
                 2. Inequality constraints.
                    (a) Network branch power constraints: |P bj |   P bj , j 2 N B .
                    (b) Variable constraints.
                        a. Generation bus output constraint: P   P Gi   P Gi , i 2 N G .
                                                          Gi
                        b. Load bus capacity constraint: 0 P Ci  P Li ,  i2N D .
            5.3.3 Model of Load Supply Capability (LSC)

            (1) Objective function:
                                                    X
                                               max     C i P Li
                                                   i2N D
            (2) Constraints of LSC optimization model:
                 1. Equality constraints. Power balance constraints (DC power flow).
                                           N       N
                                           P       P
                    (a) Grid power balance:  P Gi    P Li ¼ 0.
                                           i¼1     i¼1
                    (b) Bus power balance: P G  P L ¼Bθ.
                    (c) Branch power balance: P b ¼B b Rθ.
   130   131   132   133   134   135   136   137   138   139   140