Page 255 - Mathematical Models and Algorithms for Power System Optimization
P. 255

Optimization Method for Load Frequency Feed Forward Control 247

               7.5.1 Local Estimator

               From Eqs. (7.39) to (7.41), motion equations of the steam turbine and hydro turbine have the
               following structures:
                                           _
                                          X Tj ¼ A Tj X Tj + B Tj Δu j + C Tj ΔP Lj          (7.44)

               The difference between the above mentioned equations is that the elements in A Tj , B Tj , and C Tj
               are different,
               where

                                            T
                                           X ¼ ΔM j ΔN j ΔP Tj Δω j
                                            Xj
               Local measurement includes:
                                            Δω mj ¼ Δω j + η ¼ H X Tj + η                    (7.45)
                                                              T
                                                          j   j      j
                                                 Δu mj ¼ Δu j + η                            (7.46)
                                                              mj
                                                 ΔP mLj ¼ ΔP Lj + η j                        (7.47)

               From Eqs. (7.44)–(7.47), we know
                                        _
                                       X Tj ¼ A Tj X Tj + B Tj Δu mj + C Tj ΔP mLj + V Tj
                                                                                             (7.48)
                                                T
                                       Δω mj ¼ H X Tj + η
                                                Tj     Tj
               η and V in Eq. (7.45)–(7.48) are white noise. Transform the Eq. (7.44) into equivalent discrete
               state equation:
                                X Tj k +1ð                                                   (7.49)
                                        Þ ¼ ϕ X Tj kðÞ + G Tj Δu mj kðÞ + T Tj ΔP mLj kðÞ + V Tj
                                            Tj
                                              Δω mj kðÞ ¼ H X Tj + η                         (7.50)
                                                          T
                                                          Tj     Tj
               Transformation methods are shown in Section 7.6.

               V Tj and η Tj are white noise. Kalman filtering equations corresponding to Eqs. (7.49) and
               (7.50) are:

                               ^
                              X Tj k +1Þ ¼ X Tj k +1Þ + Kk +1Þ Δω mj k +1Þ X Tj k +1Þ        (7.51)
                                                                            ð
                                                      ð
                                                                 ð
                                            ð
                                 ð
                                          ^
                                                            ð
                               X Tj kðÞ ¼ ϕ X Tj k  1Þ + G Tj Δu mj k  1Þ + T Tj ΔP mLj k  1Þ  (7.52)
                                             ð
                                                                            ð
                                        Tj
                                                         h                      i  1
                                                                          T
                              K Tj k +1ð    ð                   ð                            (7.53)
                                      Þ ¼ P Tj k +1=kÞH Tj + H Tj P Tj k +1=kÞH + R Tj
                                                                          Tj
                                                                 T
                                          P Tj k +1=kð  Þ ¼ ϕ P Tj kðÞϕ + Q Tj               (7.54)
                                                        Tj
                                                                 Tj

                                                                  ð
                                        P Tj k +1ð  Þ ¼ 1 KkðÞH Tj P Tj k +1=kÞ              (7.55)
               where R Tj and Q Tj mean the covariance matrix of η Tj and V Tj , respectively.
   250   251   252   253   254   255   256   257   258   259   260