Page 251 - Mathematical Models and Algorithms for Power System Optimization
P. 251

Optimization Method for Load Frequency Feed Forward Control 243












                                                     Fig. 7.10
                                       Hydrogenerating unit disturbance model.



                                                                         9
                                                 1   1            1
                                       pΔM 2 ¼        Δω Δμ              >
                                                                         >
                                                 T 1 R            T 1  ΔM 2>
                                                                         >
                                                                         >
                                                                         >
                                              T i        1       1       >
                                                                         >
                                                                         >
                                       pΔN 2    pΔM 2 ¼   ΔM 2     ΔN 2  =
                                              T 2       T 2      T 2                         (7.39)
                                                       2        2        >
                                       pΔP T +2pΔN 2 ¼   ΔN 2     ΔP T   >
                                                                         >
                                                                         >
                                                      T W      T W       >
                                                                         >
                                               D       1       1         >
                                                                         >
                                       pΔω ¼     Δω +    ΔP T    ΔP L    >
                                                                         ;
                                               M       M       M
               Rearrange this equation to get:
                                  1                            1
                          2                                       3
                                               0       0                    2  1  3
                                  T 1
                          6                                       7                    2    3
                                                                   2     3
                                                              RT 1 7
                          6                                                               0
                2     3                                           7 ΔM 2    6  T 1 7
                          6    1               1               1
                 pΔM 2             T i                                      6     7
                                                       0           6     7 6   T i  7
                          6                                       7                    6    7
                          6                                       7                    6  0 7
                 pΔN 2        T 2  T 1 T 2     T 2
                6     7                                            6  ΔN 2  7 6   7
                          6                                  RT 1 T 2 7                6    7
                6     7                                            6     7 6      7         7ΔP L

                        ¼ 6                                       7        + T 1 T 2 7 Δμ + 6
                4     5         1            1   1      2     2    6     7 6
                 pΔP T    6         T i                           7 ΔP T 5 6      7    6  0 7
                                                                   4
                  pΔω     6  2            2                       7         6   2T i 7  4  1  5
                                                                  7
                          6
                          6    T 2  T 1 T 2  T 2  T W  T W   RT 2  7  Δω    4  T 1 T 2  5    M
                                                       1       D
                          4                                       5
                                 0             0                               0
                                                       M      M
                                                                                             (7.40)
               The state equation obtained here for the hydrogenerator model are the same as those for the
               thermal generator model and also the basis for future analysis. The physical meaning and data
               values of all parameters in the thermal generator and hydrogenerator models are detailed in
               Reference [84].
               The combination of the previously mentioned thermal and hydro plants can constitute a
               multiunit power system. When the number of generators increased, to study the entire system, it
               is very difficult to directly simulate the system differential equations either by numerical
               calculation method or by simulated simulator. Thus, the equivalent problem of power system is
               considered in the following section.
   246   247   248   249   250   251   252   253   254   255   256