Page 202 - Mathematical Techniques of Fractional Order Systems
P. 202

Controllability of Single-valued Chapter | 7  191


              (i) ^ aðλÞ 6¼ 0 and  1  AρðAÞ for all λ . ω
                        ^   ^ aðλÞ  21
             (ii) HðλÞ: 5 kðλÞðI2 ^ aðλÞAÞ  satisfies the estimates
                                         Mn!
                               ðnÞ
                            OH ðλÞO #        n11  ; λ . ω; nAℕ:
                                       ðλ2ωÞ
                Let A be a closed linear operator and fS α ðtÞg t $ 0  be an exponentially
             bounded and strongly continuous operator family in LðHÞ such that the
                             ^
             Laplace transform S α ðλÞ exists for λ . ω. It is proved in Lizama (2000) that
             S α ðtÞ is an ða; kÞ-regularized family with generator A if and only if for every
                            21
             λ . ω; ðI2 ^ aðλÞAÞ  exists in LðHÞ and
                             ^             21   ð N
                             kðλÞ  1                2λs
                     HðλÞx 5          I2A    x 5   e   S α ðsÞxds; xAH:
                                  ^
                             ^ aðλÞ aðλÞ         0
                Consider the following form of FSDEs
                                               ð t           ð t
             c  α           c  α21
              D xðtÞ5AxðtÞ1 D     BuðtÞ1Ft;x t ;  gðt;s;x s Þds 1  σðt;s;x s ÞdWðsÞ
               t              t
                                                0             0
             by taking the Laplace transform on both sides of the above equation,
             we have

                                                             ^
                α
              λ ^ xðλÞ 2 λ α21 xð0Þ 2 λ α22 0      1   ^ uðλÞ 1 FðλÞ 1 ^σðλÞ    ð7:3Þ
                                    x ð0Þ 5 A^ xðλÞ 1
                                                 λ 12α
             where

                  ^ uðλÞ 5  Ð  N 2λt BuðtÞdt; σðλÞ 5  Ð  N 2λt  Ð    t  σðt; s; x s ÞdWðsÞ dt
                                       ^
                           e
                                                e
                         0                    0      0
                                        ^

                  ^ xðλÞ 5  Ð  N 2λt xðtÞdt;  FðλÞ 5  Ð  N 2λt Ft; x t ;  Ð t  gðt; s; x s Þds dt

                           e
                                                e
                         0                    0           0
             it follows from (7.3) that
                 α
               ðλ I 2 AÞ^ xðλÞ 5 λ α21 φð0Þ 1 λ α22 x 1 1 λ α21  ^ uðλÞ 1 λ α21 ^  α21  ^ σðλÞ
                                                            FðλÞ 1 λ
                               α
                                                  α
                                     21
                                                        21
                    ^ xðλÞ 5 λ α21 ðλ I2AÞ φð0Þ 1 λ α22 ðλ I2AÞ x 1
                                                ^
                                  α
                                       21
                          1 λ α21  ðλ I2AÞ ½^ uðλÞ 1 FðλÞ 1 ^σðλފ
                                                                        ð7:4Þ
             now, one needs to find the Laplace transformable and strongly continuous
             family  of   bounded  linear  operators,  say  S α ðtÞ  such  that
                          α
             ^
             S α ðλÞ 5 λ α21 ðλ I2AÞ : In other words, one searches for the scalar func-
                               21
             tions aðtÞ and kðtÞ such that
                             ^             21
                            kðλÞ   1            α21  α    21
                                      I2A    5 λ   ðλ I2AÞ :            ð7:5Þ
                                  ^
                             ^ aðλÞ aðλÞ
                In order to have the identity (7.5), one necessarily has ^ aðλÞ 5  λ 1 α and
             ^
                                                                      α21
                                                                      t
             kðλÞ 5 . By using inverse Laplace transformation, one gets aðtÞ 5  ΓðαÞ  and
                   1
                   λ
   197   198   199   200   201   202   203   204   205   206   207