Page 205 - Mathematical Techniques of Fractional Order Systems
P. 205

194  Mathematical Techniques of Fractional Order Systems


            7.2.1.2 Approximate Controllability Result
            Theorem 7.2: Suppose that the hypotheses ðH 1 Þ ðH 5 Þ are satisfied then the
            system (7.1) (7.2) has a mild solution on J, provided that

                              2ωb
                            e   2 1        ^
                         2
                      4M b            δ 1 4ðd 1 βÞ 1 ΔTrðQÞ sup mðtÞ
                               2ω                        tAJ
                                                                       ð7:6Þ
                                          4  4  2ωb
                                      5OBO M bðe   2 1Þ
                                                       1 1 , 1
                                            2ωε 2
            Proof: Let B b be the space of all functions x:ð2N; bŠ-H such that x 0 AB
            and the restriction x: ½0;bŠ-H is continuous. Let OUO b be a seminorm in B b
            defined by

                                                          1
                              OxO b 5 Ox 0 O B 1 sup EOxðsÞO 2 2 :

                                           sA½0;bŠ
                                               ε                      ε
               For any E . 0, consider the operator Φ :B b -PðB b Þ defined by Φ x, the
            set of ρAB b such that


                    φðtÞ; tAð2N;0Š;
                  8
                  >
                  <
                              Ð t         Ð  t       ε       Ð t
            ρðtÞ5   S α ðtÞφð0Þ1  0  S α ðsÞx 1 ds1  0  S α ðt2sÞBu ðs;xÞds1  0  S α ðt2sÞfðsÞds
                  >
                    1   S α ðt2sÞ
                  :    Ð t      Ð    s
                       0         0  σðs;τ;x τ ÞdWðτÞ ds;tAJ; fAN F;x
            where
                                           n
                  E                     b 21      Ð b  ~
                 u ðs; xÞ 5 B S ðb 2 sÞðEI1Π Þ  E~ x b 1  0  φðsÞdWðsÞ 2 S α ðbÞφð0Þ
                            α
                                        0
                           b           Ð b
                        2    S α ðsÞx 1 ds 2  S α ðb 2 sÞfðsÞds
                          Ð
                           0            0
                                                       o
                          Ð b        Ð    s
                        2    S α ðb 2 sÞ  σðs; τ; x τ ÞdWðτÞ ds ; fAN F;x :
                           0          0
               For φAB, define

                                ^
                                φðtÞ 5  φðtÞ; tAð2N; 0Š
                                       S α ðtÞφð0Þ; tAJ
                 ^
                                ^
            then φAB b . Let xðtÞ 5 φðtÞ 1 yðtÞ; 2N , t # b. It is easy to check that x
            satisfies (7.1) (7.2) if and only if y 0 5 0 and
   200   201   202   203   204   205   206   207   208   209   210