Page 210 - Mathematical Techniques of Fractional Order Systems
P. 210

Controllability of Single-valued Chapter | 7  199


                            n  Ð  t 1 2E        2
             EOρðt 2 Þ 2 ρðt 1 ÞO # 12 E:  ½S α ðt 2 Þ2S α ðt 1 ފx 1 ds:
                        2
                                0
                                               2
                          1 E:  Ð  t 1  ½S α ðt 2 Þ2S α ðt 1 ފx 1 ds: 1 E:  Ð  t 2  S α ðt 2 Þx 1 ds: 2
                               t 1 2E               t 1
                                                    ^
                                                 E
                          1 E:  Ð 0 t 1 2E ½S α ðt 2 2sÞ2S α ðt 1 2sފBu ðs; φ1yÞds: 2
                                                    ^
                                                 E
                          1 E:  Ð  t 1  ½S α ðt 2 2sÞ2S α ðt 1 2sފBu ðs; φ1yÞds: 2
                               t 1 2E
                                                2
                                          ^
                          1 E:  Ð  t 2  S α ðt 2 2sÞBu ðs; φ1yÞds: 1 E:  Ð t 1 2E ½S α ðt 2 2sÞ2S α ðt 1 2sފfðsÞds: 2
                                        E
                               t 1                   0
                                                    2
                          1 E:  Ð t 1 2E ½S α ðt 2 2sÞ2S α ðt 1 2sފfðsÞds: 1 E:  Ð t 1 t 2  S α ðt 2 2sÞfðsÞds: 2
                               t 1

                                                       ^
                          1 E:  Ð t 1 2E  ½S α ðt 2 2sÞ2S α ðt 1 2sފ   Ð  s  σðs; τ; φ τ 1y τ ÞdWðτÞ ds: 2
                               0                 0

                                                      ^
                          1 E:  Ð  t 1          Ð  s  σðs; τ; φ τ 1y τ ÞdWðτÞ ds: 2
                               t 1 2E  ½S α ðt 2 2sÞ2S α ðt 1 2sފ  0
                                                          o
                          1 E:  Ð  t 2  S α ðt 2 2sÞ  Ð  s σðs; τ; ^ φ τ 1y τ ÞdWðτÞ ds: 2
                               t 1      0
                             n
                                    t 1 2E
                                   Ð              2    2
                          # 12 ðt 1 2 EÞ  OS α ðt 2 Þ 2 S α ðt 1 ÞO EOx 1 O ds
                                    0
                                                                    2
                                            2
                                                2
                          1 E  Ð  t 1  OS α ðt 2 Þ 2 S α ðt 1 ÞO EOx 1 O ds 1 ðt 2 2 t 1 ÞM 2  Ð  t 2  e 2ωt EOx 1 O ds
                             t 1 2E                         t 1
                                                        2
                          1 ðt 1 2 EÞOBO 2  Ð  t 1 2E  OS α ðt 2 2 sÞ 2 S α ðt 1 2 sÞO Ξds
                                     0
                                                               2
                          1 EOBO 2  Ð  t 1  OS α ðt 2 2 sÞ 2 S α ðt 1 2 sÞO Ξds 1 ðt 2 2 t 1 ÞM OBO 2  Ð  t 2  e 2ωt Ξds
                                                    2
                                 t 1 2E                             t 1
                                  t 1 2E
                                 Ð                   2
                          1 ðt 1 2 EÞ  OS α ðt 2 2 sÞ 2 S α ðt 1 2 sÞO ðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞds
                                 0
                                                2
                          1 E  Ð  t 1  OS α ðt 2 2 sÞ 2 S α ðt 1 2 sÞO ðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞds

                             t 1 2E

                          1 ðt 2 2 t 1 ÞM 2  Ð  t 2  e 2ωt ðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞds
                                    t 1
                                          ð t 1 2E
                                                              2

                          1 ðt 1 2 EÞTrðQÞ sup mðtÞ  OS α ðt 2 2 sÞ 2 S α ðt 1 2 sÞO Λ σ ð4r 1 r Þds
                                     tAJ   0
                                      ð
                                       t 1
                                                          2

                          1 ETrðQÞ sup mðtÞ  OS α ðt 2 2 sÞ 2 S α ðt 1 2 sÞO Λ σ ð4r 1 r Þds
                                 tAJ   t 1 2E
                                            ð
                                             t 2
                                  2           e 2ωt Λ σ ð4r 1 r Þds

                          1 ðt 2 2 t 1 ÞM TrðQÞ sup mðtÞ
                                       tAJ   t 1
             for E sufficiently small, we can verify that the right-hand side of the above
             inequality tends to zero as t 2 -t 1 . Furthermore, the compactness of S α ðtÞ
             implies the continuity in the uniform operator topology. Thus, Ψ maps B r
             into an equicontinuous family of functions.
                Step 4: Next, one needs to prove that VðtÞ 5 fðΨyÞðtÞ; yAB r g is relatively
             compact in H. Obviously VðtÞ is relatively compact for t 5 0. Let 0 , t # b
             be fixed and E be a real number satisfying 0 , ε , t. For yAB r , define
                    t2E          Ð  t2E       E   ^        Ð t2E
              ρ 5   0  S α ðsÞx 1 ds 1  0  S α ðt 2 sÞBu ðs; φ 1 yÞds 1  0  S α ðt 2 sÞfðsÞds
                   Ð
               ε
                      t2E          Ð  s  ^
                   1    S α ðt 2 sÞ  σðs; τ; φ 1 y τ ÞdWðτÞ ds
                     Ð
                      0           0      τ
             where fAN F;x . Since S α ðtÞ is a compact operator, the set V E ðtÞ 5 fρ ðtÞ:yAB r g
                                                                    E
             is relatively compact in H for each E,0 , E , t. Moreover, for each 0 , E , t,
   205   206   207   208   209   210   211   212   213   214   215