Page 214 - Mathematical Techniques of Fractional Order Systems
P. 214

Controllability of Single-valued Chapter | 7  203


             where
                             Ð  N 2λt         ^    Ð  N 2λt
                       ^ uðλÞ 5  e  BðtÞuðtÞdt; fðλÞ 5  e  fðt; xðtÞÞdt;
                              0                     0
                       ^ gðλÞ 5  Ð  N 2λt  Ð    t  σðs; xðsÞÞdWðsÞ dt

                                e
                              0      0
             It follows from (7.11) that
                  α
                                                    fðλÞ 1 λ
                ðλ I 2 AÞ^ xðλÞ 5 λ α21 x 0 1 λ α21  ^ uðλÞ 1 λ α21 ^  α21  ^ σðλÞ
                                                     α
                                    α
                                          21
                                                           21
                        ^ xðλÞ 5 λ α21 ðλ I2AÞ x 0 1 λ α21 ðλ I2AÞ uðλÞ  ð7:12Þ
                                                             ^
                                                         α
                                      α
                                           21 ^
                              1 λ α21 ðλ I2AÞ fðλÞ 1 λ α21  ðλ I2AÞ σðλÞ
                                                              21
                                                                ^
             one needs to find the Laplace transformable and strongly continuous family
                                                     ^
                                                                  α
             of bounded linear operators, say S α ðtÞ such that S α ðλÞ 5 λ α21 ðλ I2AÞ : In
                                                                       21
             other words, one searches for the scalar functions aðtÞ and kðtÞ such that
                             ^             21
                            kðλÞ   1            α21  α    21
                                      I2A    5 λ   ðλ I2AÞ :           ð7:13Þ
                                  ^
                             ^ aðλÞ aðλÞ
                In order to have the identity (7.13), we necessarily have ^ aðλÞ 5  λ 1 α and
             ^
                   1
             kðλÞ 5 . By using the inverse Laplace transformation, one obtains
                   λ
             aðtÞ 5  t α21  and kðtÞ 5 1. It can be concluded that the appropriate family S α ðtÞ
                   ΓðαÞ
             corresponds to an ða; kÞ-regularized family with aðtÞ & kðtÞ as precisely
             defined above.
                From (7.12), one has
                            ^        ^          ^    ^    ^
                       ^ xðλÞ 5 S α ðλÞx 0 1 S α ðλÞ^ uðλÞ 1 S α ðλÞfðλÞ 1 S α ðλÞ^σðλÞ
             by employing the inverse Laplace transformation on both sides of the above
             equation, one can get
                   xðtÞ 5 S α ðtÞx 0 1  Ð t  S α ðt 2 sÞBðsÞuðsÞds 1  Ð t  S α ðt 2 sÞf ðs; xðsÞÞds
                                 0                   0
                          Ð t       Ð    s
                        1   S α ðt 2 sÞ  σðτ; xðτÞÞdWðτÞ ds:
                           0         0
             Definition 7.10: An H-valued stochastic process fxðtÞ; tAJg is said to be a
             mild solution of the fractional Cauchy problem (7.9) (7.10) if
              (i) xðtÞ is F t -adapted and measurable for all t $ 0 .
             (ii) xðtÞ is continuous on J almost surely and the following stochastic inte-
                 gral is verified
                   xðtÞ 5 S α ðtÞx 0 1  Ð t  S α ðt 2 sÞBðsÞuðsÞds 1  Ð t  S α ðt 2 sÞf ðs; xðsÞÞds
                                 0                   0

                        1  Ð  t  S α ðt 2 sÞ  Ð    s  σðτ; xðτÞÞdWðτÞ ds:
                           0         0
   209   210   211   212   213   214   215   216   217   218   219