Page 211 - Mathematical Techniques of Fractional Order Systems
P. 211

200  Mathematical Techniques of Fractional Order Systems


                                                                   ^
                              n   Ð  t        2     Ð t                   2
                                                                E
             EOρðtÞ 2 ρ ðtÞO # 4 E:  t2E  S α ðsÞx 1 ds: 1 E:  t2E  S α ðt2sÞBu ðs; φ1yÞds:
                         2
                     E
                                  t
                            1 E:  Ð t2E  S α ðt2sÞfðsÞds: 2
                                                    ^
                                                                   2  o
                                  t
                            1 E:  Ð t2E  S α ðt2sÞ  Ð 0 s  σðs; τ; φ 1y τ ÞdWðτÞ ds:  :
                                                     τ
               Hence, there exist relatively compact sets arbitrarily close to the set
            VðtÞ 5 fðΨyÞðtÞ:yAB r g, and the set VðtÞ is relatively compact in H for all
            tA½0;bŠ. Since, it is compact at t 5 0, hence VðtÞ is relatively compact in H
            for all tA½0;bŠ.
                                                             n
                                            ðnÞ

               Step 5: Ψ has a closed graph. Let y -y as n-N; ρ AΨy , for each
                                                                  ðnÞ

                        n

                                                                n
            y AB q and ρ -ρ as n-N. We prove that ρ AΨy . Since ρ AΨy , there

             ðnÞ
                                                                    ðnÞ
            exists f  ðnÞ AN F;y ðnÞ such that
                   8
                     0; tAð2N; 0Š
                   >
                   >
                   <  Ð  t       Ð t         E  ^   ðnÞ    Ð t       ðnÞ
              n
             ρ ðtÞ 5  0  S α ðsÞx 1 ds 1  0  S α ðt 2 sÞBu ðs; φ 1 y Þds 1  0  S α ðt 2 sÞf  ðsÞds

                   >     Ð  t      Ð  s   ^
                      1              σðs; τ; φ 1 y ÞdWðτÞ ds; tAJ:
                   >                           ðnÞ
                         0          0          τ
                   :      S α ðt 2 sÞ      τ

            one must show that there exists f AN F;y   such that for each tAJ
                    8
                      0; tAð2N; 0Š
                    >
                                                 ^
                    >
                                              E
                      Ð t         Ð  t                     Ð  t
                    <   S α ðsÞx 1 ds 1  S α ðt 2 sÞBu ðs; φ 1 y Þds 1


              ρ ðtÞ 5  0           0                       0  S α ðt 2 sÞf ðsÞds

                    >    Ð t        Ð  s   ^
                       1
                    >
                                            τ
                    :      S α ðt 2 sÞ  σðs; τ; φ 1 y ÞdWðτÞ ds; tAJ:
                          0         0           τ
               Now, for every tAJ, one has
                                               ^
                                            E
               n
             :ρ ðtÞ 2  Ð  t  S α ðsÞx 1 ds 2  Ð  t  S α ðt 2 sÞBu ðs; φ 1 y Þds
                                                    ðnÞ
                     0            0

                     Ð  t              Ð  t      Ð s     ^
                   2   S α ðt 2 sÞf  ðnÞ ðsÞds 2  S α ðt 2 sÞ  σðs; τ; φ 1 y ÞdWðτÞ ds
                                                              ðnÞ
                     0                 0          0       τ   τ
                            Ð  t        Ð t
                                                       ^
                                                   E

                   2 ρ ðtÞ 2  S α ðsÞx 1 ds 2  S α ðt 2 sÞBu ðs; φ 1 y Þds

                             0           0
                                               Ð s                    2
                                                      ^
                     t
                                      t
                                                          T
                                     Ð
                   2  S α ðt2sÞf ðsÞds2  S α ðt2sÞ  σðs; τ; φ 1y ÞdWðτÞ ds : -0
                    Ð

                     0               0         0       τ  τ           b
            as n-N. Consider the linear continuous operator Θ:L 2 ðJ; HÞ-CðJ; HÞ
                              Ð  t            Ð t
                     ðΘρÞðtÞ 5  S α ðt 2 sÞfðsÞds 1  S α ðt 2 sÞBB S ðb 2 tÞ

                               0               0            α

                                Ð b     b 21
                             3     ðEI1Π Þ S α ðb 2 τÞfðτÞdτ ds
                                 0      τ
            clearly it follows from Lemma 7.1 that Θ3N F;x is a closed graph. Also from
            the definition of Θ, one has that for every tAJ
                                                     ^
                                                 ε
                    n
                   ρ ðtÞ 2  Ð t  S α ðsÞx 1 ds 2  Ð t  S α ðt 2 sÞBu ðs; φ 1 y Þds
                                                         ðnÞ
                           0           0
                                     Ð  s
                                            ^
                           t
                          Ð
                        2   S α ðt 2 sÞ  σðs; τ; φ 1 y ÞdWðτÞ dsAΘðN
                                                 ðnÞ
                           0         0       τ   τ              F;y ðnÞÞ
   206   207   208   209   210   211   212   213   214   215   216