Page 209 - Mathematical Techniques of Fractional Order Systems
P. 209

198  Mathematical Techniques of Fractional Order Systems



                                r
                  I 3 5 4E:  Ð  t  S α ðt2sÞf ðsÞds: 2
                         0
                                            2
                                   r
                         2
                                      2
                     # 4M b  Ð  t e 2ωðt2sÞ EOf ðsÞO ds # 4M b  Ð  t  e 2ωðt2sÞ ðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞds

                           0                   0
                                          0      1
                                            e 2ωb  2 1
                         2                       A ;
                                             2ω
                     # 4M bðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞ @

                                              ^
                          I 4 5 4E:  Ð  t  S α ðt2sÞ  Ð  s σðs; τ; φ τ 1y ÞdWðτÞ ds:  2
                                                  r
                                                  τ
                                 0      0
                                                          2
                                2
                                                    r
                             # 4M b  Ð  t e 2ωðt2sÞ E:  Ð  s  σðs; τ; ^ φ τ 1y ÞdWðτÞ: ds
                                   0       0        τ
                                                          2
                                                    ^
                                                        r
                                2
                             # 4M b  Ð  t e 2ωðt2sÞ  TrðQÞ  Ð  s  E:σðs; τ; φ τ 1y Þ: dτds
                                                        τ
                                   0         0            Q
                                2     Ð  t  e 2ωðt2sÞ mðsÞΛ σ ðO ^ φ τ 1 y O Þds
                                                      r 2
                             # 4M bTrðQÞ
                                      0               τ B
                                2     Ð  t  2ωðt2sÞ
                             # 4M bTrðQÞ  e  mðsÞΛ σ ð4r 1 r Þds
                                      0
                                                   0     1
                                                    e 2ωb  2 1
                                2
                             # 4M bTrðQÞ sup mðtÞΛ σ ð4r 1 r Þ @  A
                                      tAJ             2ω
            by combining the estimated I 1 -I 4 together with (7.7), one arrives at
                         0      1
                                 "          (
                                        2
                          e 2ωb  2 1  5M OBO 4        ð b
                                                             2
                                                  2
                        2       A x 1 1      2EO~ b O 1 2  EO ~ φðsÞO ds
                                                x
                            2ω          ε 2           0
                   r # 4M b @
                                        0      1
                                         e 2ωb  2 1
                                     2
                                 2
                        2 2ωb
                                                   2

                     1 M e  EOφð0ÞO 1 M bx 1  @  A 1 M bðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞ
                                           2ω
                       0      1
                                                             )
                        e 2ωb  2 1           ð  b
                                  2

                              A 1 M bTrðQÞ sup mðtÞ  e 2ωðb2sÞ Λ σ ð4r 1 r Þds
                     3 @
                          2ω            tAJ   0
                                                          #

                     1 ðμðrÞ 1 ð ^ d 1 βÞð4r 1 r ÞÞ 1 TrðQÞ sup mðtÞΛ σ ð4r 1 r Þ
                                             tAJ
            dividing both sides of the above inequality by r and taking r-N, one gets
                                 2ωb
                                e  2 1
                             2
                           4M b        δ 1 4ð ^ d 1 βÞ 1 ΔTrðQÞ sup mðtÞ
                                 2ω                    tAJ
                                       5OBO M bðe  2 1Þ  1 1 $ 1
                                           4  4  2ωb
                                            2ωε 2
            which is a contradiction to our assumption (7.6). Thus, for some r . 0,
            ΨðB r ÞDB r .
               Step 3: ΨðB r Þ is equicontinuous. Indeed, let E . 0 be small,
            0 , t 1 , t 2 # b. For each yAB r and ρ belonging to Ψy, there exists fAN F;x
            such that for each tAJ,
   204   205   206   207   208   209   210   211   212   213   214