Page 290 - Mathematical Techniques of Fractional Order Systems
P. 290
Design of Fractional Order Fuzzy Sliding Mode Controller Chapter | 9 279
Kumar, V., Rana, K.P.S., Kumar, J., Mishra, P., 2016. Self-tuned robust fractional order fuzzy
PD controller for uncertain and nonlinear active suspension system. Neur. Comput.
Applicat. Available from: https://doi.org/10.1007/s00521-016-2774-x.
Liu, J., Wang, X., 2012. Advanced Sliding Mode Control for Mechanical Systems: Design,
Analysis and MATLAB Simulation. Springer, Tsinghua University Press, Beijing.
Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A., 2017a. Robust Adaptive
Supervisory Fractional order Controller For optimal Energy Management in Wind Turbine
with Battery Storage. Studies in Computational Intelligence, Vol. 688. Springer-Verlag,
Germany, pp. 165 202.
Meghni, B., Dib, D., Azar, A.T., Saadoun, A., 2017b. Effective supervisory controller to extend
optimal energy management in hybrid wind turbine under energy and reliability constraints.
Int. J. Dyn. Control Springer . Available from: https://doi.org/10.1007/s40435-016-0296-0.
Meghni, B., Dib, D., Azar, A.T., 2017c. A second-order sliding mode and fuzzy logic control to
Optimal Energy Management in PMSG Wind Turbine with Battery Storage. Neur. Comput.
Applicat. 28 (6), 1417 1434. Available from: https://doi.org/10.1007/s00521-015-2161-z.
Mekki, H., Boukhetala, D., Azar, A.T., 2015. Sliding modes for fault tolerant control. In: Azar,
A.T., Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control systems, Studies
in Computational Intelligence book Series, Vol. 576. Springer-Verlag GmbH Berlin/
Heidelberg, pp. 407 433. Available from: http://dx.doi.org/10.1007/978-3-319-11173-5_15.
Mishra, P., Kumar, V., Rana, K.P.S., 2015. A fractional order fuzzy PID controller for binary
distillation column control. Exp. Syst. Applicat. 42 (22), 8533 8549.
Mu, X., 2010. Fuzzy neural sliding mode control based on genetic algorithm for multi-link
robots. In: IEEE Chinese Control and Decision Conference (CCDC), pp. 1766 1770.
Munoz, D., Sbarbaro, D., 2000. An adaptive sliding-mode controller for discrete nonlinear sys-
tems. IEEE Trans. Ind. Electron. 43 (3), 574 581.
Niu, Y., Lam, J., Wang, X., Ho, D.W.C., 2003. Sliding-mode control for nonlinear state-delayed
systems using neural-network approximation. IEEE Proc. Control Theory Applicat. 150 (3),
233 239.
Ouannas, A., Azar, A.T., Abu-Saris, R., 2016a. A new type of hybrid synchronization between
arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybern. Available from: https://doi.org/
10.1007/s13042-016-0566-3.
Ouannas, A., Azar, A.T., Radwan, A.G., 2016b. On Inverse Problem of Generalized
Synchronization Between Different Dimensional Integer-Order and Fractional-Order Chaotic
Systems. The 28th International Conference on Microelectronics, IEEE, December 17 20,
2016, Cairo, Egypt.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017a. On New Fractional Inverse Matrix
Projective Synchronization Schemes. Studies in Computational Intelligence, Vol. 688.
Springer-Verlag, Germany, pp. 497 524.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017b. Fractional Inverse Generalized
Chaos Synchronization Between Different Dimensional Systems. Studies in Computational
Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 525 551.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017c. A New Method To Synchronize
Fractional Chaotic Systems With Different Dimensions. Studies in Computational
Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 581 611.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017d. Study On Coexistence of Different
Types of Synchronization Between Different dimensional Fractional Chaotic Systems.
Studies in Computational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 637 669.