Page 463 - Mathematical Techniques of Fractional Order Systems
P. 463
448 Mathematical Techniques of Fractional Order Systems
Vaidyanathan, S., Sampath, S., 2017. Anti-synchronisation of identical chaotic systems via novel
sliding control and its application to a novel chaotic system. Int. J. Modelling Identif.
Control 27 (1), 3 13.
Vaidyanathan, S., Idowu, B.A., Azar, A.T., 2015. Backstepping controller design for the global
chaos synchronization of sprott’s jerk systems. In: Azar, A.T., Vaidyanathan, S. (Eds.),
Chaos Modeling and Control Systems Design. Springer volume 581 of Studies in
Computational Intelligence, Berlin, Germany, pp. 39 58.
Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017a. An eight-term 3-d novel chaotic system with
three quadratic nonlinearities, its adaptive feedback control and synchronization. In: Azar,
A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and Synchronization
of Chaotic Systems. Springer International Publishing, Cham, pp. 719 746.
Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017b. Hyperchaos and adaptive control of a novel
hyperchaotic system with two quadratic nonlinearities. In: Azar, A.T., Vaidyanathan, S.,
Ouannas, A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems.
Springer International Publishing, Cham, pp. 773 803.
Vaidyanathan, S., Zhu, Q., Azar, A.T., 2017c. Adaptive control of a novel nonlinear double con-
vection chaotic system. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional
Order Control and Synchronization of Chaotic Systems. Springer International Publishing,
Cham, pp. 357 385.
Vinagre, B.M., Chen, Y.Q., Petr, I., 2003. Two direct tustin discretization methods for
fractional-order differentiator/integrator. J. Franklin Institute 340 (5), 349 362.
Wang, J., Xiong, X., Zhang, Y., 2006. Extending synchronization scheme to chaotic fractional-
order chen systems. Phys. A: Statist. Mech. Applicat. 370 (2), 279 285.
Wang, Z., Huang, X., Shen, H., 2012. Control of an uncertain fractional order economic system
via adaptive sliding mode. Neurocomputing 83, 83 88.
Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., Pham, V.-T., 2017. Four-wing attractors in a
novel chaotic system with hyperbolic sine nonlinearity. Optik Int. J. Light Electron
Optics 131, 1071 1078.
Wei, D.Q., Wan, L., Luo, X.S., Zeng, S.Y., Zhang, B., 2014. Global exponential stabilization for
chaotic brushless dc motors with a single input. Nonlinear Dynam. 77 (1), 209 212.
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining lyapunov exponents
from a time series. Phys. D: Nonlinear Phenomena 16 (3), 285 317.
Wu, X., Li, Y., Kurths, J., 2015. A new color image encryption scheme using cml and a
fractional-order chaotic system. PLoS One 10 (3), e0119660.
Xi, H., Li, Y., Huang, X., 2014. Generation and nonlinear dynamical analyses of fractional-order
memristor-based lorenz systems. Entropy 16 (12), 6240 6253.
Yin, C., ming Zhong, S., fan Chen, W., 2012. Design of sliding mode controller for a class of
fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simulat. 17 (1),
356 366.
Yin, C., Dadras, S., ming Zhong, S., Chen, Y., 2013. Control of a novel class of fractional-order
chaotic systems via adaptive sliding mode control approach. Appl. Math. Modelling 37 (4),
2469 2483.
Yousri, D., AbdelAty, A.M., Said, L.A., AboBakr, A., Radwan, A.G., 2017. Biological inspired
optimization algorithms for cole-impedance parameters identification. AEU Int. J. Electr.
Communicat. 78, 79 89.

