Page 458 - Mathematical Techniques of Fractional Order Systems
P. 458

Applications of Continuous-time Fractional Order Chapter | 14  443


             Leonov, G.A., Kuznetsov, N.V., 2013. Hidden attractors in dynamical systems. from hidden
                oscillations in hilbert-kolmogorov, aizerman, and kalman problems to hidden chaotic
                attractor in chua circuits. Int. J. Bifurcation and Chaos 23 (01), 1330002.
             Li, C., Chen, G., 2004. Chaos and hyperchaos in the fractional-order rssler equations. Phys. A:
                Statist. Mech. Applicat. 341, 55 61.
             Lorenz, E.N., 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130 141.
             Lu, J., Chen, G., 2002. A new chaotic attractor coined. Int. J. Bifurcation and Chaos 12 (03),
                659 661.
             Luo, C., Wang, X., 2013. Chaos generated from the fractional-order complex chen system and
                its application to digital secure communication. Int. J. Modern Phys. C 24 (04), 1350025.
             Matouk, A., 2011. Chaos, feedback control and synchronization of a fractional-order modified auton-
                omous van der polduffing circuit. Commun. Nonlinear Sci. Numer. Simulat. 16 (2), 975 986.
             Meghni, B., Dib, D., Azar, A.T., 2017a. A second-order sliding mode and fuzzy logic control to
                optimal energy management in wind turbine with battery storage. Neural Comput. Applicat.
                28 (6), 14171434.
             Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A., 2017b. Robust adaptive super-
                visory fractional order controller for optimal energy management in wind turbine with bat-
                tery storage. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control
                and Synchronization of Chaotic Systems. Springer International Publishing, Cham,
                pp. 165 202.
             Mizrak, O.O., Ozalp, N., 2017. Fractional analog of a chemical system inspired by braess’ para-
                dox. Computat. Appl. Math.
             Moaddy, K., Radwan, A., Salama, K., Momani, S., Hashim, I., 2012. The fractional-order
                modeling and synchronization of electrically coupled neuron systems. Comput. Math.
                Applicat. 64 (10), 3329 3339. Advances in FDE, III.
             Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V., 2010. Fractional-order Systems
                and Controls: Fundamentals and Applications. Springer Science & Business Media, New York.
             Moysis, L., Azar, A.T., 2017. New discrete time 2d chaotic maps. Int. J. System Dynam.
                Applicat. 6 (1), 77 104.
             Odibat, Z.M., 2009. Adaptive feedback control and synchronization of non-identical chaotic
                fractional order systems. Nonlinear Dynam. 60 (4), 479 487.
             Ouannas, A., Grassi, G., 2016a. Inverse full state hybrid projective synchronization for chaotic
                maps with different dimensions. Chin. Phys. B 25 (9), 090503.
             Ouannas, A., Grassi, G., 2016b. A new approach to study the coexistence of some synchroniza-
                tion types between chaotic maps with different dimensions. Nonlinear Dynam. 86 (2),
                1319 1328.
             Ouannas, A., Al-sawalha, M.M., Ziar, T., 2016a. Fractional chaos synchronization schemes for
                different dimensional systems with non-identical fractional-orders via two scaling matrices.
                Optik   Int. J. Light Electron Optics 127 (20), 8410 8418.
             Ouannas, A., Azar, A.T., Abu-Saris, R., 2016b. A new type of hybrid synchronization between
                arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybern. 1 8.
             Ouannas, A., Azar, A.T., Vaidyanathan, S., 2016c. A robust method for new fractional hybrid
                chaos synchronization. Math. Methods Appl. Sci. (pp. n/a n/a).
             Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017a. New hybrid synchronization schemes based
                on coexistence of various types of synchronization between master-slave hyperchaotic sys-
                tems. Int. J. Comput. Appl. Technol. 55 (2), 112 120.
   453   454   455   456   457   458   459   460   461   462   463