Page 456 - Mathematical Techniques of Fractional Order Systems
P. 456
Applications of Continuous-time Fractional Order Chapter | 14 441
Ansari, S.P., Agrawal, S.K., Das, S., 2015. Stability analysis of fractional-order generalized cha-
otic susceptible infected recovered epidemic model and its synchronization using active
control method. Pramana 84 (1), 23 32.
Arneodo, A., Coullet, P., Tresser, C., 1981. Possible new strange attractors with spiral structure.
Commun. Math. Phys. 79 (4), 573 579.
Asheghan, M.M., Beheshti, M.T.H., Tavazoei, M.S., 2011. Robust synchronization of perturbed
chen’s fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simulat. 16 (2),
1044 1051.
Azar, A.T., Vaidyanathan, S., 2015a. Chaos Modeling and Control Systems Design volume 581 of
Studies in Computational Intelligence. Studies in Computational Intelligence, Springer, Germany.
Azar, A.T., Vaidyanathan, S., 2015b. Computational Intelligence Applications in Modelling and
Control, Vol. 575. Studies in Computational Intelligence, Springer, Berlin, Germany.
Azar, A.T., Vaidyanathan, S., 2015c. Handbook of Research on Advanced Intelligent Control
Engineering and Automation. IGI Global, New York, NY.
Azar, A.T., Vaidyanathan, S., 2016. Advances in Chaos Theory and Intelligent Control, Vol.
337. Springer, Berlin, Germany.
Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and
Synchronization of Chaotic Systems, Vol. 688. Studies in Computational Intelligence,
Springer, Berlin, Germany.
Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.-T., Radwan, A.G., et al.,
2017b. A novel chaotic system without equilibrium: dynamics, synchronization, and circuit
realization. Complexity 2017, (Article ID7871467), 11 pages.
Azar, A.T., Ouannas, A., Singh, S., 2018. Control of new type of fractional chaos synchroniza-
tion. In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, M.F. (Eds.), Proceedings of the
International Conference on Advanced Intelligent Systems and Informatics 2017. Springer
International Publishing, Cham, pp. 47 56.
Barbosa, R.S., Machado, J.T., 2006. Implementation of discrete-time fractional-order controllers
based on ls approximations. Acta Polytech. Hung. 3 (4), 5 22.
Barbosa, R.S., Machado, J.T., Vinagre, B., Calderon, A., 2007. Analysis of the van der pol oscil-
lator containing derivatives of fractional order. J. Vibrat. Control 13 (9-10), 1291 1301.
Baskonus, H.M., Mekkaoui, T., Hammouch, Z., Bulut, H., 2015. Active control of a chaotic frac-
tional order economic system. Entropy 17 (8), 5771 5783.
Borah, M., Roy, B.K., 2017. Can fractional-order coexisting attractors undergo a rotational phe-
nomenon?. ISA Trans. Available from: http://dx.doi.org/10.1016/j.isatra.2017.02.007.
Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T., 2016a. Fuzzy adaptive synchronization
of uncertain fractional-order chaotic systems. Advances in Chaos Theory and
IntelligentControl. Springer, Berlin, Germany, pp. 681 697.
Boulkroune, A., Hamel, S., Azar, A.T., Vaidyanathan, S., 2016b. Fuzzy control-based function
synchronization of unknown chaotic systems with dead-zone input. In: Azar, A.T.,
Vaidyanathan, S. (Eds.), Advances in Chaos Theory and Intelligent Control. Springer
International Publishing, Cham, pp. 699 718.
Brown, R., Bryant, P., Abarbanel, H.D., 1991. Computing the lyapunov spectrum of a dynamical
system from an observed time series. Phys. Rev. A 43 (6), 2787.
Chen, G., Ueta, T., 1999. Yet another chaotic attractor. Int. J. Bifurcation Chaos 09 (07),
1465 1466.
Chen, W.-L., Chen, T., Lin, C.-H., Chen, P.-J., Kan, C.-D., 2013a. Phonographic signal with a
fractional-order chaotic system: a novel and simple algorithm for analyzing residual arterio-
venous access stenosis. Med. Biol. Eng. Comput. 51 (9), 1011 1019.

