Page 49 - Mathematical Techniques of Fractional Order Systems
P. 49

Nonlinear Fractional Order Boundary-Value Problems Chapter | 2  39



               TABLE 2.1 Symbols
               Symbol                     Name
               D α t                      Caputo fractional derivative operator
               ℬ,ℬ 0                      Boundary operators
               α
               J                          Riemann Liouville fractional integral operator
               α                          Order
               ϕ(t, p), φ(t, p)           Homotopy series
               h                          Control parameter
               L                          Auxiliary linear operator
               p                          Homotopy parameter
               u 0 (t)                    Initial guess
               u m (t)                    Successive approximation
               H(t)                       Auxiliary function
               U M (t)                    mth-order approximate solution
               d k                        Initial conditions values
               λ(τ)                       A general Lagrange multiplier
               Γ                          Gamma function
               E                          Unknown parameter
               E                          Dimensionless parameter
               u(t)                       Unknown function
               ψ                          Convective-conductive parameter
               λ                          Frank Kamenetskii parameter
               β                          Dimensionless parameter



             2.2  THE METHODS PROCEDURES
             To illustrate the methods procedures consider the following nonlinear frac-
             tional differential equation:
                               α
                             D uðtÞ 1 f ðt; uðtÞÞ 5 0; n 2 1 , α # n;   ð2:1Þ
                               t
             with boundary conditions
                                           @u

                                      ℬ u;     5 0;                     ð2:2Þ
                                           @n
                                             α
             where ℬ is a boundary operator and D denotes Caputo fractional derivative
                                             t
             which is defined as (Podlubny, 1999)
   44   45   46   47   48   49   50   51   52   53   54