Page 50 - Mathematical Techniques of Fractional Order Systems
P. 50

40  Mathematical Techniques of Fractional Order Systems


                      α        1    ð t
                    D uðtÞ 5          ðt2τÞ n2α21 ðnÞ                  ð2:3Þ
                                               u ðτÞdτ; n 2 1 , α , n:
                      t
                            Γðn 2 aÞ  0
                                                                        α
               The important property of the Caputo fractional derivative operator D is
                                                                        t
            (Podlubny, 1999)
                                              n21      t i
                                α
                                  α
                               J D uðtÞ 5 uðtÞ 2  X u ð0Þ ;            ð2:4Þ
                                                  ðiÞ
                                  t                    i!
                                               i50
                   α
            where J is the Riemann Liouville fractional integral operator and defined
            as
                               α
                              J uðtÞ 5  1  ð t  ðt2τÞ α21 uðτÞdτ:      ð2:5Þ
                                     ΓðαÞ  0
            2.2.1  Predictor Homotopy Analysis Method
            Liao (1992) proposed a powerful and easy semianalytic tool for nonlinear
            problems, namely the HAM. The homotopy is a continuous transformation
            from one function to another (Liao, 2012, 2003). The homotopy between
            two continuous functions f (t) and g(t) from a topological space X to topolog-
            ical space Y is defined to be continuous function ℋ(t, p)

                                   ℋðt; pÞ:X 3 ½0; 1Š-Y;               ð2:6Þ
            where p is called the homotopy parameter and p A [0, 1] such that if t A X
            then ℋ(t,0) 5 f (t) and ℋ(t,1) 5 g(t). The mth-order homotopy derivative
            of ℋ(t, p) is defined by
                                              m
                                 m
                               D ℋðt; pÞ 5  1 @ ℋðt; pÞ     p50        ð2:7Þ
                                          m!   @p m
            where m $ 0 is an integer. And has the following properties, for homotopy
            series
                                    N               N
                                   X       i        X      i
                           ϕðt; pÞ 5  u i ðtÞp ; φðt; pÞ 5  v i ðtÞp ;  ð2:8Þ
                                   i50              i50
            the following are held:
                              m
                 m
                                 j
            1. D (ϕ) 5 u m and D (p ϕ) 5 D m2j ϕ 5 u m2j .
            2. Let L to be a linear operator independent of the homotopy parameter p
                                m
                     m
               then D (Lϕ) 5 L [D (ϕ)]
                         m
                 m
            3. D ðϕφÞ 5  P  u m2k v k :
                        k50
            4. If f and g are functions independent of homotopy parameter p then
                 m
               D ðfφ 1 gϕÞ 5 fv m 1 gu m :
   45   46   47   48   49   50   51   52   53   54   55