Page 46 - Mathematical Techniques of Fractional Order Systems
P. 46
36 Mathematical Techniques of Fractional Order Systems
Sierociuk, D., Dzieli´ nski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T., 2013.
Modelling heat transfer in heterogeneous media using fractional calculus. Philosop. Trans.
Royal Soc. 371 (1990), 1 10.
Sierociuk, D., Malesza, W., Macias, M., 2015a. Derivation, interpretation, and analog modelling
of fractional variable order derivative definition. Appl. Math. Model. 39 (13), 3876 3888.
Sierociuk, D., Malesza, W., Macias, M., 2015b. Fractional Variable Order Derivative Simulink
User Guide, https://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-vari-
able-order-der
Sierociuk, D., Malesza, W., Macias, M., 2015c. On 685 the recursive fractional variable-order
derivative: Equivalent switching strategy, duality, and analog modeling. Circuits Systems
Signal Processing 34 (4), 1077 1113.
Silva, B., Bilezikian, J., 2015. Parathyroid hormone: anabolic and catabolic actions on the skele-
ton. Curr. Opin. Pharmacol. 22, 41 50.
Sohn, W., Simiens, M.A., Jaeger, K., Hutton, S., 2014. The pharmacokinetics and pharmacody-
namics of denosumab in patients with advanced solid tumours and bone metastases: a sys-
tematic review. Bri. J. Clin. Pharmacol. 78 (3), 477 487.
Suva, L.J., Washam, C., Nicholas, R.W., Griffin, R.J., 2011. Bone metastasis: mechanisms and
therapeutic opportunities. Nat. Rev. Endocrinol. 7 (4), 208 218.
Vale ´rio, D., Sa ´ da Costa, J., 2006. Tuning of fractional PID controllers with Ziegler-Nichols
type rules. Signal Processing 86 (10), 2771 2784.
Vale ´rio, D., Sa ´ da Costa, J., 2011a. Introduction to single-input, single-output Fractional Control.
IET Control Theory Applicat. 5 (8), 1033 1057.
Vale ´rio, D., Sa ´ da Costa, J., 2011b. Variable-order fractional derivatives and their numerical
approximations. Signal Processing 91 (3), 470 483.
Vale ´rio, D., Sa ´ da Costa, J., 2012. Fractional reset control. Signal Image Video Processing 6 (3),
495 501.
Vale ´rio, D., Sa ´ da Costa, J., 2013. An Introduction to Fractional Control. Institution of
Engineering and Technology.
Vale ´rio, D., Coelho, R.M., Vinga, S., 2016. Fractional dynamic modelling of bone metastasis,
microenvironment and therapy, in ‘International Conference on Fractional Differentiation
and its Applications’, Novi Sad, Serbia.
Wheeler, N., 1997. Construction and physical application of the fractional calculus. Zometas -
Zoledronic Acid for Injection (2017). Novartis Pharmaceuticals Corporation, East Hanover, NJ.