Page 587 - Mathematical Techniques of Fractional Order Systems
P. 587
Parameters Identification of Fractional Order Chapter | 18 557
Diethelm, K., 2010. The analysis of fractional differential equations: an application-oriented
exposition using differential operators of Caputo type. http://www.amazon.com/Analysis-
Fractional-Differential-Equations-Application-Oriented/dp/3642145736/ref 5 pd{_}sim{_}b
{_}7.
Emary, E., Zawbaa, H.M., July 2016. Impact of chaos functions on modern swarm optimizers.
PLoS One 11 (7), e0158738. Available from: https://doi.org/10.1371%2Fjournal.
pone.0158738.
Gandomi, A.H., Yang, X.S., 2014. Chaotic bat algorithm. J. Comp. Sci. 5 (2), 224 232.
Gu, W., Yu, Y., Hu, W., 2016. Parameter estimation of unknown fractional-order memristor-
based chaotic systems by a hybrid artificial bee colony algorithm combined with differential
evolution. Nonlinear Dyn. 84 (2), 779 795. Available from: https://doi.org/10.1007/s11071-
015-2527-x.
Khateb, F., Kuba ´nek, D., Tsirimokou, G., Psychalinos, C., 2016. Fractional-order filters based
on low-voltage DDCCs. Microelectr. J. 50, 50 59. Available from: http://linkinghub.else-
vier.com/retrieve/pii/S0026269216000331.
Li, C.-L., Wu, L., 2016. Optik Sliding mode control for synchronization of fractional permanent
magnet synchronous motors with finite time. Optik - Int. J. Light Electr. Opt. 127 (6),
3329 3332. Available from: https://doi.org/10.1016/j.ijleo.2015.12.102.
Li, C.-L., Yu, S.-M., Luo, X.-S., 2012. Fractional-order permanent magnet synchronous motor
and its adaptive chaotic control. Chin. Phys. B 21 (10), 100506. Available from: https://doi.
org/10.1088%2F1674-1056%2F21%2F10%2F100506.
Li, Z., Park, J.B., Joo, Y.H., Zhang, B., Chen, G., 2002. Bifurcations and chaos in a permanent-
magnet synchronous motor. IEEE Trans. Circ. Sys. I: Fund. Theory Applicat. 49 (3),
383 387. Available from: https://doi.org/10.1109%2F81.989176.
Liu, B., Wang, L., Jin, Y.-H., Tang, F., Huang, D.-X., 2005. Improved particle swarm optimiza-
tion combined with chaos. Chaos Solitons Fractals 25 (5), 1261 1271. Available from:
https://doi.org/10.1016%2Fj.chaos.2004.11.095.
Liu, K., Zhang, Q., Chen, J., Zhu, Z.Q., Zhang, J., May 2011. Online multiparameter estimation
of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE
Trans. Ind. Electron. 58 (5), 1776 1788. Available from: https://doi.org/10.1109%
2Ftie.2010.2054055.
Liu, L., Liu, W., Cartes, D.A., 2008. Particle swarm optimization-based parameter identification
applied to permanent magnet synchronous motors. Eng. Applicat. Artificial Intelligence 21
(7), 1092 1100.
Miller, K.S., Ross, B., 1993. An introduction to the fractional calculus and fractional differential
equations. John Wiley & Sons, New York.
Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Adv. Eng. Software 69,
46 61. Available from: https://doi.org/10.1016%2Fj.advengsoft.2013.12.007.
Petra ´ˇ s, I., 2011. Fractional-Order Chaotic Systems. Springer, Berlin Heidelberg, pp. 103 184.
Available from: https://doi.org/10.1007%2F978-3-642-18101-6_5.
Rahimi, A., Bavafa, F., Aghababaei, S., Khooban, M.H., Naghavi, S.V., 2016. The online param-
eter identification of chaotic behaviour in permanent magnet synchronous motor by self-
adaptive learning bat-inspired algorithm. Int. J. Elect. Power Energy Syst. 78, 285 291.
Available from: https://doi.org/10.1016%2Fj.1jepes.2015.11.084.
Rajagopal, K., Vaidhyanathan, S., Karthikeyan, A., Duraisamy, P., 2016. Dynamic analysis and
chaos suppression in a fractional order brushless DC motor. Elect. Eng. Available from:
https://doi.org/10.1007/s00202-016-0444-8.

