Page 604 - Mathematical Techniques of Fractional Order Systems
P. 604

574  Mathematical Techniques of Fractional Order Systems


               The combined Lyapunov function for the subsystems (19.18) and (19.19)
            will be:

                                               1
                                      V 2 5 V 1 1  z 2 2
                                               2
                                  q        2           q
                              .D V 2 #2 az 2 z 1 z 2 1 z 2 D z 2
                                           1
                                2    2
                          #2 az 2 az 2 z 1 z 2 1 z 2 faðz 3 1 α 2 Þ 1 dz 1 g
                                1    2
               Again, virtual controller α 2 is chosen as,
                                          1
                                     α 2 5  ð1 2 dÞz 1
                                          a
            which results into

                                  q        2    2
                                D V 2 #2 az 2 az 1 az 2 z 3
                                           1    2
               Further, stepping back towards the third subsystem in (19.17), one can
            write,
                               q                       q
                              D z 3 5 cx 2 2 x 2 x 4 2 x 3 1 u 2 D α 2  ð19:20Þ
               The Lyapunov function for z 1 ; z 2 ; z 3 Þ subsystem defined by (19.18),
                                        ð
            (19.19) and (19.20), is chosen as:
                                               1
                                      V 3 5 V 2 1  z 2
                                               2  3
            and its fractional order time derivative is given by,

                    q        2    2                              q
                   D V 3 #2 az 2 az 1 az 2 z 3 1 z 3 ðcx 2 2 x 2 x 4 2 x 3 1 u 2 D α 2 Þ
                             1    2
               The final control law can be chosen as,
                                                          q
                           u 52 kz 3 2 cx 2 1 x 2 x 4 1 x 3 2 az 2 1 D α 2  ð19:21Þ
            which leads to,
                                                 2
                                            2
                                   q
                                 D V 3 #2 az 2 az 2 kz 2
                                            1    2   3
               From the above two equations, it’s concluded that the system is stable and
                                             T
            the transformed states ½ z 1  z 2  z 3  z 4 Š converge to zero as t-N.Using
            the definition in Theorem 4, the asymptotic stabilization of state vector
                           T
            ½ x 1  x 2  x 3  x 4 Š can be ensured.
            19.4.2 Controller Design for Synchronization
            Here, a controller is designed using the backstepping approach for synchroni-
            zation of fractional order Lorenz Stenflo system in a master slave configu-
            ration. First, a master and slave dynamics are defined and then error
   599   600   601   602   603   604   605   606   607   608   609