Page 605 - Mathematical Techniques of Fractional Order Systems
P. 605

Control and Synchronization Chapter | 19  575


             dynamics are written. Further, controller is designed which enables the states
             of the slave system to follow the states of the master system. The master sys-
             tem can be defined as,
                                    q
                                   D t x 1 52 x 2 2 ax 1
                                    q
                                   D t x 2 5 ax 3 2 ax 2 1 dx 1
                                    q                                 ð19:22Þ
                                   D t x 3 5 cx 2 2 x 2 x 4 2 x 3
                                    q
                                   D t x 4 5 x 2 x 3 2 bx 4
                Similarly, the slave system can be written as,
                                   q
                                  D t y 1 52 y 2 2 ay 1
                                   q
                                  D t y 2 5 ay 3 2 ay 2 1 dy 1
                                   q                                  ð19:23Þ
                                  D t y 3 5 cy 2 2 y 2 y 4 2 y 3 1 u
                                   q
                                  D t y 4 5 y 2 y 3 2 by 4
                For the errors defined as, e 1 5 y 1 2 x 1 , e 2 5 y 2 2 x 2 , e 3 5 y 3 2 x 3 , and
             e 4 5 y 4 2 x 4 , the error dynamics are written as:

                             q 1
                            D t e 1 52 e 2 2 ae 1
                             q 2
                            D t e 2 5 ae 3 2 ae 2 1 de 1
                                                                      ð19:24Þ
                            D t e 3 5 ce 2 2 e 2 e 4 2 e 3 2 e 2 x 4 2 x 2 e 4 1 u
                             q 3
                             q
                            D t e 4 5 e 2 e 3 2 be 4 1 x 3 e 2 1 x 2 e 3
                With the transformation, e 1 5 z 1 , z 2 5 e 2 2 α 1 , where e 2 as the controller
             and α 1 as the virtual controller for the first subsystem in (19.24), yields,
                                    q
                                          ð
                                  D z 1 52 z 2 1 α 1 Þ 2 az 1         ð19:25Þ
                Lyapunov function for the above dynamics can be written as,
                                             1  2
                                         V 1 5  z 1
                                             2
                                   q
                                             ð
                               .D V 1 # z 1 ð2 z 2 1 α 1 Þ 2 az 1 Þ
                For, α 1 5 0;
                                     q         2
                                    D V 1 #2 az 2 z 1 z 2
                                               1
                Next for the second subsystem, and using the transformation,
             z 3 5 e 3 2 α 2 ,
                                  q
                                D z 2 5 aðz 3 1 α 2 Þ 2 ae 2 1 de 1   ð19:26Þ
                The new Lyapunov function can be written as,
                                               1
                                      V 2 5 V 1 1  z 2 2
                                               2
                            q        2
                        .D V 2 #2 az 2 z 1 z 2 1 z 2 aðz 3 1 α 2 Þ 2 ae 2 1 de 1
                                     1
   600   601   602   603   604   605   606   607   608   609   610