Page 688 - Mathematical Techniques of Fractional Order Systems
P. 688
Fractional Order Chaotic Systems Chapter | 21 659
Lu ¨, J.H., Chen, G.R., Yu, X.H., Leung, H., 2004. Design and analysis of multi-scroll chaotic
attractors from saturated function series. IEEE Trans. Circuits Syst. I Regul. Pap. 51 (12),
2476 2490.
Mainieri, R., Rehacek, J., 1999. Projective synchronization in three-dimensional chaotic systems.
Phys. Rev. Lett. 82 (15), 3042 3045.
Mandelbrot, B., 1982. The Fractal Geometry of Nature. Flammarion, New York, NY.
Marwan, N., 2008. A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164 (1),
3 12.
Marwan, N., Kurths, J., 2002. Nonlinear analysis of bivariate data with cross recurrence plots.
Phys. Lett. A 302 (5-6), 299 307.
Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J., 2002. Recurrence plot based
measures of complexity and its application to heart rate variability data. Phys. Rev. E 66
(2), 026702.
Marwan, N., Romano, M.C., Thiel, M., Kurths, J., 2007. Recurrence plots for the analysis of
complex systems. Phys. Rep. 438 (5-6), 237 329.
Odibat, Z.M., Corson, N., Aziz-Alaoui, M.A., 2010. Synchronization of chaotic fractional-order
systems via linear control. Int. J. Bifurc. Chaos 20 (1), 81 97.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017a. On new fractional inverse matrix
projective synchronization schemes, Studies in Computational Intelligence, 688. Springer-
Verlag, Germany, pp. 497 524.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017b. Fractional inverse generalized chaos
synchronization between different dimensional systems, Studies in Computational
Intelligence, 688. Springer-Verlag, Germany, pp. 525 551.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017c. A new method to synchronize frac-
tional chaotic systems with different dimensions, Studies in Computational Intelligence,
688. Springer-Verlag, Germany, pp. 581 611.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017d. Study on coexistence of different types
of synchronization between different dimensional fractional chaotic systems, Studies in
Computational Intelligence, 688. Springer-Verlag, Germany, pp. 637 669.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017e. Generalized synchronization of differ-
ent dimensional integer-order and fractional order chaotic systems, Studies in Computational
Intelligence, 688. Springer-Verlag, Germany, pp. 671 697.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017f. On a simple approach for Q-S synchroniza-
tion of chaotic dynamical systems in continuous-time. Int. J. Comput. Sci. Math. 8 (1),
20 27.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017g. New hybrid synchronization schemes based
on coexistence of various types of synchronization between master-slave hyperchaotic sys-
tems. Int. J. Comp. Appl. Technol. 55 (2), 112 120.
Ouannas, A., Azar, A.T., Ziar, T., 2017h. On inverse full state hybrid function projective syn-
chronization for continuous-time chaotic dynamical systems with arbitrary dimensions. Diff.
Eq. Dynam. Syst. 21, 1 14.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017i. A robust method for new fractional hybrid
chaos synchronization. Math. Methods Appl. Sci. 40 (5), 1804 1812.
Ouannas, A., Grassi, G., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.T., et al., 2017j. Dead-
beat synchronization control in discrete-time chaotic systems. The 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki
Greece, 4 6 May.

