Page 689 - Mathematical Techniques of Fractional Order Systems
P. 689

660  Mathematical Techniques of Fractional Order Systems


            Pecora, L.M., Carroll, T.L., 1990. Synchronization in chaotic systems. Phys. Rev. Lett. 64 (8),
               821 824.
            Petra ´ˇ s, I., 2008. A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38 (1),
               140 147.
            Poincare ´, H., 1890. Sur le proble `me des trois corps et les e ´quations de la dynamique. Acta.
               Math. 13, 1 270.
            Razminia, A., Baleanu, D., 2013. Complete synchronization of commensurate fractional order
               chaotic systems using sliding mode control. Mechatronics 23 (7), 873 879.
            Silva, C.P., 1993. Shil’nikov’s theorem - A tutorial. IEEE Trans. Circuits Systems-I: Fund.
               Theory Applicat. 40 (10), 675 682.
            Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J., 2017. Sliding mode control tech-
               nique for multi-switching synchronization of chaotic systems. 9th International Conference
               on Modelling, Identification and Control (ICMIC 2017), Kunming China, 10-12 July.
            Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ouannas, A., 2017.
               Fractional controllable multi-scroll V-shape attractor with parameters effect. The 6th
               International Conference on Modern Circuits and Systems Technologies (MOCAST),
               Thessaloniki Greece, 4-6 May.
            Takens, F., 1981. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence.
               In: Rand, D.A., Young, L.S. (Eds.), Lecture Notes in Mathematics, 898. pp. 366 381.
            Tavazoei, M.S., Haeri, M., 2007a. Unreliability of frequency-domain approximation in recogniz-
               ing chaos in fractional-order systems. I.E.T. Signal Proc. 1 (4), 171 181.
            Tavazoei, M.S., Haeri, M., 2007b. A necessary condition for double scroll attractor existence in
               fractional-order systems. Phys. Lett. A 367 (1), 102 113.
            Tavazoei, M.S., Haeri, M., 2008a. Synchronization of chaotic fractional-order systems via active
               sliding mode controller. Phys. A 387 (1), 57 70.
            Tavazoei, M.S., Haeri, M., 2008b. Chaotic attractors in incommensurate fractional order systems.
               Phys. D 237 (20), 2628 2637.
            Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al., 2017.
               FPGA implementation of two fractional order chaotic systems. Int. J. Electr. Commun. 78,
               162 172.
            Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017a. An eight-term 3-D novel chaotic system with
               three quadratic nonlinearities, its adaptive feedback control and synchronization, Studies in
               Computational Intelligence, 688. Springer-Verlag, Germany, pp. 719 746.
            Vaidyanathan, S., Zhu, Q., Azar, A.T., 2017b. Adaptive control of a novel nonlinear double con-
               vection chaotic system, Studies in Computational Intelligence, 688. Springer-Verlag,
               Germany, pp. 357 385.
            Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017c. Hyperchaos and adaptive control of a novel
               hyperchaotic system with two quadratic nonlinearities, Studies in Computational
               Intelligence, 688. Springer-Verlag, Germany, pp. 773 803.
            Vladimirsky, E.I., Ismailov, B.I., 2015a. Synchronization, control and stability of fractional order
               hyperchaotic systems in the context of the generalized memory. Int. J. New Tech. Res. 1
               (8), 42 48.
            Vladimirsky, E.I., Ismailov, B.I., 2015b. Topological control and stability of dynamic fractional
               order systems with generalized memory. Inf. J. Eng. Innovat. Res. 4 (3), 468 472.
            Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., Pham, V.T., 2017. Four-wing attractors in a novel
               chaotic system with hyperbolic sine nonlinearity. Optik   Int. J. Light Electr. Opt. 131
               (2017), 1071 1078.
   684   685   686   687   688   689   690   691   692   693   694