Page 690 - Mathematical Techniques of Fractional Order Systems
P. 690

Fractional Order Chaotic Systems Chapter | 21  661


             Webber, C.L., Zbilut, J.P., 2005. Recurrence quantification analysis of nonlinear dynamical sys-
                tems. In: Riley, M.A., Van Orden, G.C. (Eds.), Tutorials in Contemporary Nonlinear
                Methods for the Behavioral Sciences. Digital Publication Available through the National
                Science Foundation, Arlington, VA, pp. 26 94.
             Wedekind, I., Parlitz, U., 2001. Experimental observation of synchronization and anti-
                synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor
                lasers. Int. J. Bif. Chaos Appl. Sci. Eng. 11 (4), 1141 1147.
             Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov exponents
                from a time series. Phys. D. 16 (3), 285 317.
             Zbilut, J.P., Webber, C.L., 1992. Embeddings and delays as derived from quantification of recur-
                rence plots. Phys. Lett. A 171 (3-4), 199 203.
             Zbilut, J.P., Giuliani, A., Webber, C.L., 1998. Recurrence quantification analysis and principal
                components in the detection of short complex signals. Phys. Lett. A 237 (3), 131 135.
             Zhang, J.F., Pei, Q., Zhang, X.L., 2011. A new kind of nonlinear phenomenon in coupled
                fractional-order chaotic systems: coexistence of anti-phase and complete synchronization.
                Chinese Phys. B 20 (8), 162 168.
             Zhou, T., Li, C., 2005. Synchronization in fractional-order differential systems. Phys. D 212 (1-
                2), 111 125.
             Zhu, Q., Azar, A.T., 2015. Complex system modelling and control through intelligent soft com-
                putations, Studies in Fuzziness and Soft Computing, 319. Springer-Verlag, Germany, ISBN:
                978-3-319-12882-5.
   685   686   687   688   689   690   691   692   693   694   695