Page 179 - Matrices theory and applications
P. 179

9. Iterative Methods for Linear Problems
                              162
                                                                            2
                                                                       1/2
                              wherewehave used the equality  Aw, w
 =  A
                                                                         w  . Hence
                                                                            2
                                                                          2
                                                                 2
                                                                     1/2
                                             ≤ min{ I n + AQ(A)   A
                                  E(x k − ¯x)
                                                                       e 0   | deg Q ≤ k − 1}
                                                                          2
                                                                 2
                                                                       2
                                             = E(e 0 )min{ρ(I n + AQ(A)) | deg Q ≤ k − 1},
                              since ρ(S)=  S  2 holds for every real symmetric matrix.
                                From Lemma 9.5.1, we deduce an estimate of the error E(x k − ¯x)by
                              bounding the right-hand side by
                                                                          2
                                                   min     max |1+ tQ(t)| .
                                                 deg Q≤k−1 t∈[λ 1 ,λ n]
                              Classically, the minimum is reached for

                                                                2X − λ 1 − λ n
                                             1+ XQ(X)= ω k T k                ,
                                                                   λ n − λ 1
                              where T k is a Chebyshev polynomial:
                                                
                                                 cos k arccost         if  |t|≤ 1,
                                         T k (t)=  cosh k arcosht       if  t ≥ 1,
                                                      k
                                                
                                                  (−1) cosh k arcosh |t|  if  t ≤−1.
                              The number ω k is the number that furnishes the value 1 at X =0, namely
                                                              (−1) k
                                                      ω k =   
      .
                                                           T k  λ n +λ 1
                                                               λ n −λ 1
                              Then
                                                                         1
                                          max |1+ tQ(t)| = |ω k | =               .
                                          [λ 1 ,λ n ]            cosh k arcosh  λ n +λ 1
                                                                             λ n −λ 1
                                                  2
                              Hence E(x k − ¯x) ≤|ω k | E(e 0 ). However, if
                                                                λ n + λ 1
                                                     θ := arrcosh      ,
                                                                λ n − λ 1
                              then |ω k | =(cosh kθ) −1  ≤ 2exp(−kθ), while exp(−θ) is the root, less than
                              one, of the quadratic polynomial
                                                      2
                                                     T − 2  λ n + λ 1  T +1.
                                                           λ n − λ 1
                              Setting K(A):=  A  2  A −1   2 = λ n /λ 1 the condition number of A,we
                              obtain
                                                &                  √      √
                                                            2
                                                                     λ n −        K(A) − 1
                                 e −θ  =  λ n + λ 1  −  λ n + λ 1  − 1= √  √ λ 1  =        .
                                      λ n − λ 1     λ n − λ 1        λ n +  λ 1   K(A)+1
                              The final result is the following.
   174   175   176   177   178   179   180   181   182   183   184