Page 178 - Matrices theory and applications
P. 178

9.5. The Method of the Conjugate Gradient
                              One says that the vectors p j are pairwise conjugate. Of course, conjugation
                              means A-orthogonality. This explains the name of the method.
                                The quadratic function J, strictly convex, reaches its infimum on the
                              affine subspace x 0 + H k at a unique vector, which we denote by x k .This
                              notation makes sense for k =0. If x = y+γp k ∈ x 0 +H k+1 with y ∈ x 0 +H k ,
                              then
                                                     1                                      161
                                     J(x)  = J(¯x)+ E(x − ¯x)
                                                     2
                                                     1           1  2
                                           = J(¯x)+ E(y − ¯x)+ γ E(p k )+ γ Ap k ,y − ¯x
                                                     2           2
                                                     1  2
                                           = J(y)+ γ E(p k ) − γ Ap k ,e 0 
,
                                                     2
                              since  Ap k ,y − x 0 
 = 0. Hence, minimizing J over x 0 + H k+1 amounts to
                                                                                    1 2
                              minimizing J over x 0 + H k , together with minimizing γ  →  γ E(p k ) −
                                                                                    2
                              γ p k ,r 0 
 over IR. We therefore have
                                                      x k+1 − x k ∈ IRp k .               (9.5)
                                By definition of l there exists a nonzero polynomial P of degree l such
                              that P(A)r 0 =0, that is, AP(A)e 0 =0. Since A is invertible, P(A)e 0 =0.
                              Let us assume that P(0) vanishes. Then P(X)= XQ(X)with deg Q = l−1.
                              Therefore, Q(A)r 0 =0: The map S  → S(A)r 0 is not one-to-one over the
                              polynomials of degree less than or equal to l − 1. Hence dim H l <l,a
                              contradiction. Hence P(0)  = 1, and we may assume that P(0) = 1. Then
                              P(X)= 1 − XR(X), where deg R = l − 1. Thus e 0 = R(A)r 0 ∈H l or,
                              equivalently, ¯x ∈ x 0 + H l .Conversely, if k ≤ l and ¯x ∈ x 0 + H k ,then
                              e 0 ∈H k ;thatis, e 0 = Q(A)r 0 , where deg Q ≤ k − 1. Then Q 1(A)e 0 =0,
                              because Q 1 (X)= 1 − XQ(X). Therefore, Q 1 (A)r 0 =0, Q 1 (0)  =0, and
                              deg Q 1 ≤ k. Hence k ≥ l;that is, k = l. Summing up, we have ¯x ∈ x 0 + H l
                              but ¯x  ∈ x 0 + H l−1 . Therefore, x l =¯ and x k  =¯x if k< l.
                                                             x
                              Lemma 9.5.1 Let us denote by λ n ≥ ··· ≥ λ 1 (> 0) the eigenvalues of A.
                              If k ≤ l,then

                                                                                  2
                                               x
                                        E(x k − ¯) ≤ E(e 0 ) ·  min  max |1+ λ j Q(λ j )| .
                                                          deg Q≤k−1  j
                                Proof
                                Let us compute

                                   E(x k − ¯x)=min{E(x − ¯x) | x ∈ x 0 + H k }
                                              =min{E(e 0 + y) | y ∈H k }
                                              =min{E((I n + AQ(A))e 0 ) | deg Q ≤ k − 1}
                                                                         2
                                              =min{ (I n + AQ(A))A  1/2 e 0   | deg Q ≤ k − 1},
                                                                         2
   173   174   175   176   177   178   179   180   181   182   183