Page 173 - Matrices theory and applications
P. 173

156
                              Lemma 9.4.1 Let µ be a nonzero complex number and C a tridiagonal
                              matrix, of diagonal C 0 , of upper triangular part C + and lower triangular
                              part C − .Then

                                                                1
                                                                 C − + µC + .
                                               det C =det C 0 +
                                                                µ
                                Proof 9. Iterative Methods for Linear Problems
                                It is enough to observe that the matrix C is conjugate to
                                                           1
                                                      C 0 +  C − + µC + ,
                                                           µ
                              through the linear transformation matrix
                                                                         
                                                       µ
                                                          µ 2      0
                                                                         
                                                                         
                                                               .
                                                              .          
                                               Q µ =           .           .
                                                                         
                                                                   .
                                                                   .     
                                                           0        .
                                                                         
                                                                       µ n
                                Let us apply the lemma to the computation of the characteristic
                              polynomial P ω of L ω .We have
                                      (det D)P ω (λ)  =  det((D − ωE)(λI n −L ω ))
                                                   =   det((ω + λ − 1)D − ωF − λωE)
                                                                                λω

                                                   =   det (ω + λ − 1)D − µωF −    E ,
                                                                                 µ
                              for every nonzero µ.Let us choose for µ any square root of λ.We thenhave
                                                                 2
                                                2
                                      (det D)P ω (µ ) =  det((ω + µ − 1)D − µω(E + F))
                                                                        2
                                                    =   (det D)det((ω + µ − 1)I n − µωJ).
                              Finally, we have the following lemma.
                              Lemma 9.4.2 If A is tridiagonal and D invertible, then
                                                                   2
                                                                 µ + ω − 1
                                                   2        n
                                               P ω (µ )= (µω) P J            ,
                                                                     µω
                              where P J is the characteristic polynomial of the Jacobi matrix J.
                                Let us begin with the analysis of a simple case, that of the Gauss–Seidel
                              method, for which G = L 1 .
                              Proposition 9.4.1 If A is tridiagonal and D invertible, then:
                                        2
                                               n
                                1. P G (X )= X P J (X),where P G is the characteristic polynomial of
                                   the Gauss–Seidel matrix G,
   168   169   170   171   172   173   174   175   176   177   178