Page 195 - Matrix Analysis & Applied Linear Algebra
P. 195

190              Chapter 4                                              Vector Spaces

                                                                                              2     n
                                    For example, to verify that the set of polynomials P =  1,x,x ,...,x  is
                                    linearly independent, observe that the associated Wronski matrix

                                                             1  x  x   ···      x
                                                                   2             n     
                                                            0  1  2x ···      nx n−1   
                                                           
                                                   W(x)=    0  0   2  ··· n(n − 1)x n−2 
                                                                                        
                                                             .  .  .            .      
                                                            .  .   .   . .      .      
                                                             .  .   .    .       .
                                                             0  0   0  ···       n!
                                    is triangular with nonzero diagonal entries. Consequently, W(x) is nonsingular
                                    for every value of x, and hence P must be an independent set.

                   Exercises for section 4.3


                                    4.3.1. Determine which of the following sets are linearly independent. For those
                                           sets that are linearly dependent, write one of the vectors as a linear
                                           combination of the others.
                                                       
                                                      1      2      1
                                                                      
                                                             1
                                              (a)                   ,
                                                                 ,
                                                                    5
                                                          ,
                                                      2
                                                      3      0      9
                                                                      
                                              (b)  {(123 ) , (045 ) , (006 ) , (111 )} ,
                                                       
                                                      3      1      2
                                                                      
                                              (c)                   ,
                                                                    1
                                                      2
                                                                 ,
                                                          ,
                                                             0
                                                      1      0      0
                                                                      
                                              (d)  {(2222 ) , (2202 ) , (2022 )} ,
                                                      1      0      0      0
                                                         
                                                                             
                                                                             
                                                                             
                                                   2   2   2   2 
                                                                             
                                                         
                                                                             
                                                   0   0   1   0 
                                              (e)                        .
                                                     4  ,  4  ,  4  ,  4 
                                                         
                                                                             
                                                   0   1   0   0 
                                                                             
                                                         
                                                     3      3      3      3  
                                                                             
                                                                             
                                                      0      0      0      1
                                                                    2  1  1  0

                                    4.3.2. Consider the matrix A =  4  2  1  2 .
                                                                    6  3  2  2
                                              (a) Determine a maximal linearly independent subset of columns
                                                  from A.
                                              (b) Determine the total number of linearly independent subsets that
                                                  can be constructed using the columns of A.
   190   191   192   193   194   195   196   197   198   199   200