Page 248 - Matrix Analysis & Applied Linear Algebra
P. 248

4.7 Linear Transformations                                                         243

                   Example 4.7.3
                                    Problem: If P is the projector defined in Example 4.7.1 that maps each point
                                                  3
                                    v =(x, y, z) ∈  to its orthogonal projection P(v)=(x, y, 0) in the xy -plane,
                                    determine the coordinate matrix [P] B with respect to the basis

                                                                               
                                                               1          1          1
                                                                                       
                                                               1
                                                                                     2
                                                                          2
                                                  B =   u 1 =    , u 2 =    , u 3 =     .
                                                               1          2          3
                                                                                       
                                    Solution: According to (4.7.4), the j th  column in [P] B is [P(u j )] B . Therefore,
                                                                                            
                                                     1                                        1
                                                     1
                                           P(u 1 )=     =1u 1 +1u 2 − 1u 3  =⇒ [P(u 1 )] B =    1   ,
                                                     0                                      −1
                                                                                            
                                                     1                                        0
                                                     2
                                           P(u 2 )=     =0u 1 +3u 2 − 2u 3  =⇒ [P(u 2 )] B =    3   ,
                                                     0                                      −2
                                                                                            
                                                     1                                        0
                                           P(u 3 )=     =0u 1 +3u 2 − 2u 3  =⇒ [P(u 3 )] B =    3   ,
                                                     2
                                                     0                                      −2

                                                              
                                                     1    0   0
                                    so that [P] B =    1  3  3    .
                                                   −1   −2   −2

                   Example 4.7.4
                                    Problem: Consider the same problem given in Example 4.7.3, but use different
                                    bases—say,

                                                                                     
                                                                       
                                                              1           1            1
                                                                                         
                                                                                       1
                                                              0
                                                                          1
                                                 B =   u 1 =     , u 2 =     , u 3 =   
                                                              0           0            1
                                                                                         
                                    and
                                                                                   
                                                            −1            0             0
                                                                                          
                                                                          1
                                               B =   v 1 =    0   , v 2 =     , v 3 =    1    .

                                                              0           0            −1
                                                                                          
                                    For the projector defined by P(x, y, z)=(x, y, 0), determine [P] BB  .
                                    Solution: Determine the coordinates of each P(u j ) with respect to B , as
   243   244   245   246   247   248   249   250   251   252   253