Page 304 - Matrix Analysis & Applied Linear Algebra
P. 304

300              Chapter 5                    Norms, Inner Products, and Orthogonality
                   Example 5.4.5

                                                                                   −1
                                    Problem: Determine the Fourier expansion of x =  2  with respect to the
                                                                                     1
                                    standard inner product and the orthonormal basis given in Example 5.4.4
                                                                                       
                                                             1              1              −1
                                                                                              
                                                       1               1              1
                                                                            1
                                           B =   u 1 = √  −1    , u 2 = √    , u 3 = √   −1    .
                                                      2                3              6       
                                                             0              1               2
                                    Solution: The Fourier coefficients are
                                                        −3                  2                  1
                                           ξ 1 =  u 1 x  = √ ,  ξ 2 =  u 2 x  = √ ,  ξ 3 =  u 3 x  = √ ,
                                                          2                  3                  6
                                    so
                                                                                         
                                                                       −3         2        −1
                                                                   1          1         1
                                                                                  2
                                            x = ξ 1 u 1 + ξ 2 u 2 + ξ 3 u 3 =    3    +     +    −1   .
                                                                   2          3         6
                                                                         0        2          2
                                                                                               3
                                    Youmay find it instructive to sketch a picture of these vectors in   .
                   Example 5.4.6
                                    Fourier Series. Let V be the inner-product space of real-valued functions
                                    that are integrable on the interval (−π, π) and where the inner product and
                                    norm are given by

                                                       π                           π         1/2
                                                                                      2
                                              f|g  =    f(t)g(t)dt  and   f  =      f (t)dt    .
                                                     −π                           −π
                                    It’s straightforward to verify that the set of trigonometric functions


                                                  B = {1, cos t, cos 2t, . . ., sin t, sin 2t, sin 3t, . . .}
                                    is a set of mutually orthogonal vectors, so normalizing each vector produces the
                                    orthonormal set

                                                                                            !
                                                      1   cos t cos 2t   sin t sin 2t sin 3t
                                              B =   √   , √ , √     ,..., √ , √    , √   ,... .
                                                      2π    π     π        π    π      π
                                    Given an arbitrary f ∈V, we construct its Fourier expansion

                                                                   ∞
                                                                                ∞
                                                             1          cos kt       sin kt
                                                   F(t)= α 0 √  +    α k √   +    β k √   ,        (5.4.4)
                                                             2π           π            π
                                                                  k=1          k=1
   299   300   301   302   303   304   305   306   307   308   309