Page 313 - Matrix Analysis & Applied Linear Algebra
P. 313

5.5 Gram–Schmidt Procedure                                                         309





                                           Gram–Schmidt Orthogonalization Procedure
                                       If B = {x 1 , x 2 ,..., x n } is a basis for a general inner-product space S,
                                       then the Gram–Schmidt sequence defined by

                                                                        k−1
                                               x 1               x k −  i=1   u i x k   u i
                                         u 1 =       and   u k = 
                  
 for k =2,...,n
                                               x 1              
       k−1
                                                                
x k −  i=1   u i x k   u i
                                       is an orthonormal basis for S. When S is an n-dimensional subspace
                                           m×1
                                       of C    , the Gram–Schmidt sequence can be expressed as
                                                                ∗
                                                       (I − U k U ) x k
                                                                k
                                                 u k =                 for  k =1, 2,...,n       (5.5.4)
                                                                ∗
                                                       (I − U k U ) x k
                                                                k

                                       in which U 1 = 0 m×1 and U k = u 1 | u 2 |···| u k−1  for k> 1.
                                                                                     m×k−1
                   Example 5.5.1
                                    Classical Gram–Schmidt Algorithm. The following formal algorithm is the
                                    straightforward or “classical” implementation of the Gram–Schmidt procedure.
                                    Interpret a ← b to mean that “a is defined to be (or overwritten by) b.”

                                        For k =1:
                                                   x 1
                                            u 1 ←
                                                   x 1
                                        For k> 1:
                                                      k−1

                                                           ∗
                                            u k ← x k −  (u x k )u i
                                                           i
                                                      i=1
                                                   u k
                                            u k ←
                                                   u k
                                    (See Exercise 5.5.10 for other formulations of the Gram–Schmidt algorithm.)
                                    Problem: Use the classical formulation of the Gram–Schmidt procedure given
                                    above to find an orthonormal basis for the space spanned by the following three
                                    linearly independent vectors.

                                                                                    
                                                          1              1             3
                                                       0            2            1 
                                                          0              0             1
                                                  x 1 =    ,  x 2 =     ,  x 3 =     .
                                                        −1             −1             −1
   308   309   310   311   312   313   314   315   316   317   318