Page 97 - Matrix Analysis & Applied Linear Algebra
P. 97

3.3 Linearity                                                                       91
                   Example 3.3.2

                                    Consider a linear system
                                                   a 11 x 1 + a 12 x 2 + ··· + a 1n x n = u 1 ,
                                                   a 21 x 1 + a 22 x 2 + ··· + a 2n x n = u 2 ,
                                                                       .
                                                                       .
                                                                       .
                                                   a m1 x 1 + a m2 x 2 + ··· + a mn x n = u m ,
                                                                                              
                                                                           x 1                u 1
                                                                          x 2              u 2 
                                                                                                       m
                                    to be a function u = f(x) that maps x =    .    ∈  n  to u =    .    ∈  .
                                                                            .                  .
                                                                          .                . 
                                                                           x n                u m
                                    Problem: Show that u = f(x) is linear.
                                    Solution: Let A =[a ij ] be the matrix of coefficients, and write
                                                            
                                                     αx 1 + y 1
                                                                   n                 n

                                                    αx 2 + y 2 
                                      f(αx + y)= f      .     =    (αx j + y j )A ∗j =  (αx j A ∗j + y j A ∗j )
                                                         .
                                                        .   
                                                                  j=1               j=1
                                                     αx n + y n
                                                  n            n           n          n

                                               =     αx j A ∗j +  y j A ∗j = α  x j A ∗j +  y j A ∗j
                                                  j=1         j=1          j=1        j=1
                                               = αf(x)+ f(y).


                                    According to (3.3.3), the function f is linear.

                                        The following terminology will be used from now on.


                                                          Linear Combinations

                                       For scalars α j and matrices X j , the expression
                                                                               n

                                                   α 1 X 1 + α 2 X 2 + ··· + α n X n =  α j X j
                                                                              j=1

                                       is called a linear combination of the X j ’s.
   92   93   94   95   96   97   98   99   100   101   102