Page 22 - Mechanics Analysis Composite Materials
P. 22

Chapter  1.  Introduclion                  7
            Table  1.1  (Contd.)

            Material                Ultimate   Modulus E  Specific  Maximum   Maximum
                                    tensile stress,  (GPa)   gravity   specific   specific
                                    C (MPa)                    strength,   modulus,
                                                               k,  x  lo3(m) kF:  x  IO3(m)
              Polyethylene (20-40)   2600-3300   120-170   0.97   310     17500
              Carbon (5-1  1)
              High-strength         7000      300       1.75   400       17100
              High-modulus          2700      850       1.78   150       47700
              Boron (1O(r200)       2500-3700   39M20   2.5-2.6   150    16800
              Alumina - A1203  (20-500)   240W100   470-530   3.96   100   13300
              Silicon Carbide - Sic (1&I  5)  2700   185   2.4-2.7   110   7700
              Titanium Carbide - Tic (280)  1500   450   4.9   30         9100
              Boron Carbide - B&  (50)   2 100-2500   480   2.5   100    10000
              Boron Nitride - BN  (7)   1400   90       1.9    70         4700















                             Fig.  1.4. Introduction of secant and tangent moduli.

















                            Fig.  1.5. Stress-strain  diagram for elastic-plastic material.

            However,  in  application  to  particular  problems,  this  model  can  be  usually
            substantially  simplified. To  show  this,  consider  the  bar  in  Fig.  1.1  and  assume
            that force F  is applied  at the moment  t=O  and  is  taken  off  at moment  t  = tl  as
            shown  in  Fig.  1.6(a). At  the moment  t =0, elastic and plastic strains that do not
            depend on time appear, and while time is running, the creep strain is developed. At
   17   18   19   20   21   22   23   24   25   26   27