Page 237 - Mechanics Analysis Composite Materials
P. 237

222                 Mechanics and analysis of composite materials
                        E,GPa                    G,GPa


                        1
                        128   2   6        b
                                           3     0.8
                          1
                         4                       0.4
                         oL------q9               o - &
                          0   15   30   45   60   75   90   0   16   30   45   60   75   90
             Fig. 4.98.  Dependencies of the elastic constants of a spatially reinforced composite on the orientation
                             angles:  1 - GL = fl = 0", 2 - a = p = 8",  3 - ct  = fl = 16".


             Dependencies of  elastic constants E,,  E,,  GXzand  G,  calculated with  the  aid  of
             Eqs. (4.173)  for  the  material  with  El  = 12.9 GPa,  E2  = 5.2 GPa,  E3  = 3 GPa,
             G12  = G13  = 1.5 GPa,  G23  = 1  GPa,  v21 = 0.15, ~31= 0.2, v32 = 0.2 are  presented
             in Fig. 4.98 (Vasiliev and Morozov, 1988).
               For planar structures (a= /I= 0), Eqs. (4.172) and (4.173) generalize Eqs. (4.72)
             and (4.76) for a three-dimensional stress state of a layer.


             4.9.  References

             Alfutov,  N.A.  and Zinoviev, P.A.  (1982). Deformation  and  failure of  fibrous composites with  brittle
               polymeric matrix  under plane stress. In Mechanics of Composites (I.F. Obraztsov and V.V. Vasiliev
               eds.). Mir, Moscow, pp.  166-185.
             Birger, LA. (1951). General solutions of some problems of the plasticity theory. Prikl. Mat. M&h.  15(6),
               76S770 (in Russian).
             Chamis, C.C. (1979). Impetus of composite mechanics on test methods for fiber composites. In Proc. First
                USA-USSR  Symp.  Fracture  of  Composite Materials,  Riga,  USSR  4-7  Sept.  1978 (G.C.  Sih  and
               V.P. Tamuzh eds.). Sijthoff & Noordhoff, The Netherlands,  pp. 329-348.
             Chiao, T.T.  (1979). Some interesting mechanical behaviors of fiber composite  materials.  In  Proc. 1st
                USA-USSR  Symp. Fracture of Composite Materials, Riga, USSR 4-7  Sept. 1978 (G.C. Sih and V.P.
               Tamuzh eds.). Sijthoff and Noordhoff, Alphen a/d Rijn, pp. 385-392.
             Cherevatsky, AS. (1999). Manufacturing technology of wound structures by transformation of wound
               preforms. In Proc. 12th Int. Con$  on Composite Materials (ICCM-l2), Paris, France, 5-9  July,  lop
               (CD-ROM).
             Fukui,  S., Kawata,  K.,  Kobayashi, R.,Takana, N.,  Hashimoto,  S.,  Otani,  N.  and Hondo,  A.  (1966).
               Some theoretical  and  experimental  studies  on  the  width  variation  effects for  the  filament-wound
               cylinders. In Proc. 6fhInt. Symp. Space  Techn. and Sci., Tokyo, pp. 467470.
             Green, A.E. and Adkins, J. E. (1960). Large Elastic Deformations and Nonlinear Continuum Mechanics.
               Oxford University Press, London.
             Hann,  H.T.  and  Tsai  S.W.  (1973).  Nonlinear  elastic  behavior  of  unidirectional  composite  laminae.
               J. Composite Mater. 7, 102-118.
             Hahn,  H.T.  and  Tsai,  S.W.  (1974).  On  the  behavior  of  composite  laminates  after  initial  failures.
               J. Composite Mater. 8, 288-305.
             Hashin, Z. (1987). Analysis of orthogonally cracked laminates under tension. J. Appl. Mech. 54,872-879.
             Herakovich,  C.T. (1998). Mechanics of Fibrous Composites. Wiley, New York.
   232   233   234   235   236   237   238   239   240   241   242