Page 315 - Mechanics Analysis Composite Materials
P. 315

300                 Mechanics and analysis of  composite materials

             theoretical  prediction  is  in  fair  agreement with  experimental results.  The  same
             conclusion can be made for the burst pressure that is listed in  Table 6.1 for two
             types  of  filament  wound  fiberglass pressure vessels. Typical failure mode  for the
             vessels presented in Table 6.1 is shown in Fig. 6.23.



             6.4.  References

             Annin.  B.D. and Baev, L.V. (1979). Criteria of composite material strength. In Proc First  USA-USSR
                Symposium on Fracture ojcnmposite Materials, Riga, USSR, Sept. 1978 (G.C. Sih and V.P. Tamuzh
                eds.). Sijthoff & Noordhoff, The Netherlands,  pp. 241-254.
             Ashkenazi,  E.K.  (I 966).  Strength  of’Anisotropic  and  Synthetic  Materials.  Lesnaya  Promyshlennost.
                Moscow (in Russian).
              Barbero, E.J. (1998). Introduction to Composire Materials Design. West Virginia University, USA.
             Belyankin,  F.P., Yatsenko, V.F. and  Margolin, G.G. (1971). Strength  and Deformability of  Fiberglass
                Plastics Under Biasicrl Compression. Naukova Dumka, Kiev (in Russian).
             Gol’denblat,  1.1.  and Kopnov, V.A. (1968). Criteria  of Strength and Plasticity for Structural Materials.
                Mashinostroenie, Moscow.
             Jones, R.M. (1 999). Mechanics Oj’Cnmposite Materials. 2nd edn. Taylor and Francis, Philadelphia,  PA.
              Katarzhnov,  Yu.1.  (1982). Experimental  study of load  carrying capacity of  hollow  circular and  box
                composite beams under compression and torsion. Dissertation.  Riga (in  Russian).
              Rowlands,  R.E.  (1975).  Flow  and  failure of  biaxially  loaded  composites:  experimental-theoretical
                correlation. In AMD - Vol. 13, Inelastic  Behavior  of  Cnmposife Materials. ASME Winter Annual
                Meeting, Houston. TX (C.T.  Herakovich ed.). ASME, New York,  1975, pp. 97-125.
              Skudra,  A.M.,  Bulavs,  F.Ya.,  Gurvich,  M.R.  and  Kruklinsh,  A.A.  (1989).  Elements  of  Structural
                Mechanics of  Composite Truss Systems. Riga, Zinatne (in Russian).
             Tennyson, R.C., Nanydro, A.P. and Wharram, G.E. (1980). Application of the cubic polynomial strength
                criterion to the failure analysis of composite materials.  J. Composite Mater. 14 (suppl) 2841.
              Tsai, S.W. and Hahn, H.T. (1975).  Failure analysis of composite materials.  In AMD - Vol. 13, Inelastic
                Behavior of  Composite Materials. ASME Winter Annual Meeting,  Houston, TX (C.T.  Herakovich
                ed.). ASME, New York, pp. 73-96.
              Vasiliev, V.V.  (1970). Effect of a local load on an orthotropic glass-reinforced plastic shell. J. Polymer
                Mech. 6(1),  80-85.
              Vasiliev, V.V. (1 993). Mechanics qf  Coniposite Structures. Taylor & Francis, Washington.
              Vicario, A.A. Jr. and Toland, R.H. (1975). Failure criteria  and failure analysis of composite structural
                components. In Composite Materials (L.J. Broutman and R.H. Krock eds.),  Vol. 7, Structural Design
                and Analyis, Part  I  (C.C. Chamis ed.). Academic Press. New York, pp. 51-97.
              Vorobey.  V.V.,  Morozov,  E.V.  and  Tatarnikov, O.V.  (1992).  Ana1wi.s  of  Thermostressed  Composite
                Structures. Moscow, Mashinostroenie (in Russian).
              Wu, E.M. (1974). Phenomenological anisotropic failure criterion. In Composite Materials (L.J. Broutman
                and  R.H.  Krock  eds.),  Vola2,  Mechanics of  Composite Materials (G.P.  Sendeckyj ed.). Academic
                Press.  New  York. pp. 353-43I.
   310   311   312   313   314   315   316   317   318   319   320