Page 16 - Mechanics of Asphalt Microstructure and Micromechanics
P. 16

Introduction and Fundamentals for Mathematics and Continuum Mechanics   9


              FIGURE 1.2  Illustration of         x 3
              frame rotation (0 x 1  x 2  x 3
                                            x  3
              rotated to 0 x  1  x  2  x  3 ).
                                                             x  1

                                      x  2

                                                   0
                                                                  x 2


                                      x 1
                 or
                                           '
                                                    '
                                          e =  Te  e =  T e                      (1-22)
                                                    i  ij j
                 Considering the two basis vectors e  i  = T ir e r  and e j  = T js e s , the scalar product of the two
              basis vectors is:
                             e • e = T e • T e = TT e • e = TT δ  = T T = δ  = δ


                              i  j  ir r  js s  ir  js r  s  ir  js rs  i ir  jr  ij  ij
                 By the nature of the directional cosines, one can verify that T ir T jr  = d ij .
                 It can be deduced that any vector v can be transformed into v  following frame
              transformation.
                                             −
                                  ⎧v ′ ⎫  ⎧ cos( 11),cos( 1' − 2),cos((', ) ⎫⎧v ⎫
                                             '
                                                            13
                                  ⎪  1 ⎪  ⎪                     ⎪⎪  1 ⎪
                                        ⎨
                                                            2
                                  ⎨ v ′ ⎬ = cos( ' 2 −  1 ),cos( ' 2 −  2 ),cos( ', ) 3 ⎬⎨ v ⎬
                                    2
                                                                   2
                                  ⎪  ⎪  ⎪           3'−         ⎪⎪  ⎪
                                                                 ⎪
                                               1
                                                            3 3)
                                  ⎩ 3 ′ v  ⎭  ⎩ cos( ' 3 − 1),cos(  2),cos( ',  ⎭ ⎩ v 3 ⎭
                 or                         v  = Tv  v  i  = T ij                (1-23)
              1.5.4.2  Tensor Transformation for Different Coordinate Systems
                 Considering a tensor A = A ij e i     e j  in (e 1 , e 2 , e 3 ) and its representation in the frame
              (e  1 , e  2 , e  3 ).
                                                A  ij e  i     e  j
                 Clearly, one has e  i  = T ir e r  and e  j  = T js e s and therefore:
                                      A  ij T ir e i     T js e s  = A  ij T ir T js e r     e s
              Therefore,                     A rs  = A  ij T ir T js             (1-24)
              Isotropic Tensor
              A second order isotropic tensor can be represented as:
                                   I = δ  e e

                                      ij i  j
                                                                                 (1-25)

                                  δ = δ TT =  T T = δ
                                    '
                                   ij  pq pi qj  qi qj  ij
   11   12   13   14   15   16   17   18   19   20   21