Page 21 - Mechanics of Asphalt Microstructure and Micromechanics
P. 21

14   Ch a p t e r  O n e


                 Considering:
              (dx −  (dX ) =  dx dx −  dX dX =  (x dX  )(x dX ) −δ dX dX  =  (x x  −δ  )dX dX
                 2
                        2
                 )
                                                       )
                            i  i   A  A    , i A  A  , i B  B  AB  A  B  , i A i  ,B  AB  A  B
              = (C  −δ  )dX dX                                                   (1-52)
                 AB   AB  A   B
                 Where C AB  = x i,A x i,B  or C = F T ●  F in matrix or tensor representation.
                 The Lagrangian Finite Strain Tensor is defined as:
                                           2E   =  C  −δ                         (1-53)
                                             AB   AB   AB
                 or

                                              2E =  C −δ                         (1-54)
                 and

                                 2
                                       2
                                 )
                              (dx −  (dX ) =  (C  −δ  )dX dX =  2 E dX dX        (1-55)
                                            AB  AB   A  B    AB  A   B
                 For the one-to-one mapping, one can represent X as a function of x. Therefore:
                  (dx −  (dX ) = δ dx dx −  (X dx )(X dx =  X X  ) dx dx = (δ  −  c dx dx
                                                   ) (δ −
                           2
                     2
                                                                             )
                    )
                               ij  i  j  A  ,i  i  A , j  j  i ij  A i ,  A j ,  i  j  ij  ij  i  j
                                   −1
                  c =  X X  A j ,  or  c = ( F ) T  •  F (  −1 )                 (1-56)
                  ij
                       A i ,
                 The Cauchy Deformation Tensor or Eulerian Finite Strain Tensor is defined as:
                                                        I c
                                        2e = δ ij −  c or  2e = −                (1-57)
                                                 ij
                                          ij
                 Considering two segments dX  and dX  in the reference configuration, dx  and
                                                                                 (1)
                                                   (2)
                                           (1)
                (2)
              dx  represent the two segments in the current configuration.
                             •
                 dx •  dx ( ) =  F dX  () • •  ( )  =  dX () 1  • F • •  (2) )
                                 1
                                         2
                                                   T
                         2
                    1
                   ()
                                    F dX
                                                      F dX
                 = dX  ()  • • dX  ( )  = dX  ()  • I (  + E)2  • dX  ( )  = dX ()  • dX (2)  + dX  1 ( )  •  2 • dX  2 ( )  (1-58)
                                                            2
                      1
                                                       1
                                                 2
                              2
                                    1
                                                                      E
                        C
                 If there is no strain, one can have:
                                                                )
                                                                    2
                                                               (1)
                                                    1
                                                          2
                                  2
                                          ( )
                                       1
                                       ()
                             1
                            ()
                                          2
                          dx •  dx ( )  =  dx dx cos =θ  dX  ()  •  dX ( )  =  dX dX ( ) cosθ '  (1-59)
                 It means the angles between any two segments remain unchanged.
              1.6.2.2 Displacement Representation
              Obviously, the displacement of point X can be represented as:
                                          uX ) =  x X ) −  X
                                           (
                                                   (
                                           i  A   i  A   i
                                          ux () = x −  X x ()              (1-60a, 1-60b)
                                           A  i   A   A  i
                 Therefore the Langrangian Finite Strain Tensor is:
                               2E  =  x x  −δ  =  u (  +δ  )( u +δ  ) −δ
                                                               ,
                                                           ,
                                      ,
                                                  ,
                                         ,
                                 AB   iA i B  AB  iA  iA  i B  i B  AB B
                                                       ,
                 or
                                       2E   =  u  +  u  +  u u                   (1-61)
                                          AB  A B  B A  i A i B
                                               ,
                                                    ,
                                                           ,
                                                        ,
   16   17   18   19   20   21   22   23   24   25   26