Page 23 - Mechanics of Asphalt Microstructure and Micromechanics
P. 23

16   Ch a p t e r  O n e


              1.6.2.4 Stretch Ratio
              The stretch ratio a is defined as the ratio between the length dx and that of dX measured
              in the reference direction N. It is a scalar.
                                                  dx
                                               α =                               (1-71)
                                                  dX
                 One may use a definition that can be more conveniently implemented.
                                                   dx  2
                                               2
                                             α = (   )
                                                  dX



                                                                                 (1-72)

                 One can define the stretch ratio in the n direction.
                                               1  =  dX                          (1-73)
                                               β   dx



                                    1   dX  )    dx  • •  dx
                                            2
                                                          nc
                                   β 2  = (  dx  dX  c  dX  = • • n              (1-74)

                 Due to the deformation, n may not be a unit vector and therefore typically α ≠  β .
              1.6.2.5 Material-Time Derivative
              For any quantity (may be a scalar, vector, or tenor),

                                             X t) or
                                                           x t)
                                     B ij...  =  B (,  B ij...  =  B ( ,   (1-75a, 1-75b)
                                                         ij...
                                           ij...
                 Its time variation rate can be represented either as:
                                       d  ⎡ B (, ⎤ =  ∂  ⎡ B (, ⎤
                                      dt ⎣  ij...  X t) ⎦  t ∂  ⎣  ij...  X t) ⎦    (1-76)
                 or in the spatial reference as:
                               d  ⎡ B (, ⎤ =  ∂  ⎡ B (, ⎤ +  ∂  ⎡ B (, ⎤  dx k   (1-77)
                                                              xt)
                                                 x t)
                                     x t)
                               dt ⎣  ij...  ⎦  t ∂  ⎣  ij...  ⎦  x ∂  ⎣  i ij...  ⎦  dt
                                                        k
                                d  ⎡ B (, ⎤ =  ∂  ⎡ B (, ⎤ +  ∂  ⎡ B (, ⎤
                                                                 )
                                                                 ⎦
                                dt ⎣  ij...  x t) ⎦  t ∂  ⎣  ij...  x t) ⎦  x ∂  ⎣  i ij...  xt v k     (1-78)
                                                         k
                 Therefore, one has the following operator:
                                            d  =  ∂  +  v  ∂                     (1-79)
                                            dt  t ∂  k  x ∂
                                                       k
                 or
                                            d  =  ∂  +•
                                                   v ∇
                                            dt   t ∂   x                         (1-80)
   18   19   20   21   22   23   24   25   26   27   28