Page 217 - Mechanics of Asphalt Microstructure and Micromechanics
P. 217

Fundamentals of Phenomenological Models   209


                 Scharpery (1984) showed that through introducing pseudo-elastic strain, the
              hereditary integrals can be converted into elastic stress-strain relations following
              Hooke’s Law:
                                             ε t () =  σ t ()                   (6-219)
                                              e
                                                   E
                                                     R
                  e
                 e (t)and E R  are the pseudo-elastic strain and reference modulus, respectively.
                                              t      d ετ()
                                                       e
                                          =
                                       ε() E R∫  ( C t −  τ)  τ d
                                         t
                                              0         τ d                     (6-220)
                                               t
                                       ε t () =  E R ∫ E t ( − τ) d ετ ()  τ d
                                              −1
                                        e
                                               0        τ d                     (6-221)
                                              t       d ετ()
                                                        e
                                      ε t() =  E R∫ C ( − τ)  kl  τ d
                                                  t
                                       ij       ijkl     τ d
                                              0                                 (6-222)
                                              t        d ετ()
                                      ε t() =  E R ∫ E ( −  τ)  kl  τ d
                                             −1
                                       e
                                                  t
                                                ijkl
                                       ij
                                              0          τ d                    (6-223)
                                       ε t() =  E [( + ν σ − νσ ]
                                        e
                                              −1
                                                    )
                                                1
                                        ij    R       ij  kk                    (6-224)
                 By defining the following two operators, the above relationships can be concisely
              presented as:
                                                 t       f ∂
                                        {Ddf =  E R∫  ( C t − τ ) dτ dτ
                                            }
                                                 0                              (6-225)
                                                 t       f ∂
                                        {Edf =  E R ∫  ( E t − τ ) dτ dτ
                                               −1
                                           }
                                                 0                              (6-226)
                 The correspondence principle by Schapery (1984) states that the elastic solution and
              the viscoelastic solution are associated by the following relationships:
                             σ =  σ e  ε = { Dd ε }  u = { Ddu }  T =  σ n =  σ n  (6-227)
                                             e
                                                                    e
                                                       e
                                                                     n
                              ij  ij  ij    ij   i     i   i   ij i  ij  j
                 Therefore, if one has the elastic solution for a boundary value problem, the above
              correspondence principle will allow one to obtain the corresponding viscoelastic solu-
              tion.
                 Through those operations, the generalized J integrals are:
                                             ⎛        u ∂  e  ⎞
                                         J =  ⎜ ∫  w dy T i  x ∂  i  ds ⎟
                                                  −
                                               e
                                            Γ ⎝           ⎠                     (6-228)
                 where  w =  ε kl σε e
                        e
                               d
                           ∫ 0  ij  ij
   212   213   214   215   216   217   218   219   220   221   222