Page 289 - Mechanics of Asphalt Microstructure and Micromechanics
P. 289
F inite Element Method and Boundar y Element Method 281
Desai, C.S. and Siriwardane, H.J. (1984). Constitutive Laws for Engineering Materials with
Emphasis on Geologic Materials. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
Desai, C.S., Zaman, M.M., Lightner, J.G. and Sirzwardane, H.J. (1984). Thin-layer element for
interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechan-
ics, Vol.8, pp.19–43.
Dombrovsky, L.A. (1992). Incremental constitutive equations for Miller and Bodner-Partom
viscoplastic models. Computers and Structures, Vol.44, No.5, pp.1065–1072.
Drucker, D.C., and Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Quart
Applied Mathematics, Vol.10, No.2, pp.157–165.
Efendiev, Y. and Hou, T.Y. (2008). Multiscale Finite Element Methods: Theory and Applications.
Springer-Verlag, Berlin.
Gaul, L., Kogl, M. and Wagner, M. (2003). Boundary Element Methods for Engineers and Scien-
tists : An Introductory Course with Advanced Topics. Springer, Berlin.
Goodman, R.E., Taylor, R.L. and Brekke, T.L. (1968). A model for the mechanics of jointed rock.
Journal of Soil Mechanics and Foundations Division, Vol.94, pp.637–659.
Heaps, C.W. and Mansfield, L. (1986). An improved solution procedure for creep problems.
International Journal of Numerical Methods in Engineering, Vol.23, pp.525–532.
Huebner, K.H., Thornton, E.A. and Byrom, T.G. (1995). The Finite Element Method for Engi-
neers. John Wiley, New York.
Hughes, T.J.R. (1985). Numerical implementation of constitutive models: Rate-independent de-
viatoric plasticity. S. Nemat-Nasser, R.J Asaro and G.A. Hegemier (Eds). Theoretical Founda-
tion for Large Scale Computations of Non-linear Material Behavior, Martinus Nijhoff Publishers,
Boston, pp.29–57.
Huschek, S. (1977). Evaluation of rutting due to viscous flow in asphalt pavements. Proceedings,
Fourth International Conference on the Structural Design of Asphalt Pavements, Vol.I, Ann Arbor,
pp.497–508.
Kaliakin, V.N. and Li, J. (1995). Insight into deficiencies associated with commonly used zero-
thickness interfaces elements. Computers and Geotechnics, Vol.17, pp.225–252.
Kanchi, M.B., Zienkiewicz, O.C. and Owen, D.R.J. (1978). The visco-plastic approach to prob-
lems of plasticity and creep involving geometric non-linear effects. International Journal of
Numerical Methods in Engineering, Vol.12, pp.169–181.
Kattan, P.I. (2007). MATLAB Guide to Finite Elements: An Interactive Approach. Springer-Verlag,
Berlin.
Krempl, E. (1987). Models of viscoplasticity, some comments on equilibrium (back) stress and
drag stress. Acta Mechanica, Vol.69, pp.25–42.
Krieg, R.D. (1977). Numerical integration of new unified plasticity-creep formulations. Pro-
th
ceedings of the 4 International Conference on Structural Mechanics in Reactor Technology, San
Francisco, Paper M6/4.
Kumar, V., Morjaria, M. and Mukherjee, S. (1980). Numerical integration of some stiff constitu-
tive models of inelastic deformation. Journal of Engineering Materials, Vol.102, pp.92–96.
Kwon, Y.W. and Bang, H. (2000). The Finite Element Method using MATLAB. CRC Press, Boca
Raton.
Lai, J.S. and Anderson, D. (1973). Irrecoverable and recoverable nonlinear viscoelastic properties
of asphalt concrete. Transportation Research Record, No.468, pp.73–88.
Lubliner, J. (1990). Plasticity Theory. Macmillan Publishing Company, New York.
Lush, A.M., Weber, G. and Anand, L. (1989) An implicit time-integration procedure for a set
of internal variable constitutive equations for isotropic elasto-viscoplasticity. International
Journal of Plasticity, Vol.5, pp.521–549.