Page 288 - Mechanics of Asphalt Microstructure and Micromechanics
P. 288
280 Ch a p t e r E i gh t
Becker, A.A. (1992). The Boundary Element Method in Engineering: A Complete Course,
McGraw-Hill, London.
Beer, G. (1985). An isoparametric joint/interface element for finite element analysis. International
Journal for Numerical Method in Engineering, Vol.21, pp.585–600.
Belytschko, T. and Chen, J.S. (2007). Meshfree and Particle Methods. John Wiley and Sons Ltd.
Birgisson, B., Soranakom, C., Napier, J.A.L. and Roque, R. (2002a). Simulation of the crack-
ing behavior of asphalt mixtures using random assemblies of displacement discontinuity
th
boundary elements. The 15 ASCE Engineering Mechanics Conference, Columbia University,
New York.
Birgisson, B., Sangpetngam, B. and Roque, R. (2002b). Prediction of the viscoelastic response
and crack growth in asphalt mixtures using the boundary element method. Transportation
Research Record, No.1789, pp.129–35.
Birgisson, B., Soranakom, C., Napier, J.A.L. and Roque, R. (2003). Simulation of fracture initia-
tion in hot-mix asphalt mixtures. Transportation Research Record, No.1849, pp.183–190.
Birgisson, B., Soranakom, C., Napier, J.A.L. and Roque, R. (2004). Microstructure and fracture in
asphalt mixtures using a boundary element approach. Journal of Materials in Civil Engineer-
ing, Vol.16, pp.116–121.
Birgisson, B., Montepara, A., Napier, J.A.L., Romeo, E., Roncella, R. and Tebaldi, G. (2006). Mi-
cromechanical analyses for measurement and prediction of HMA fracture energy. Transpor-
tation Research Record, No.1970, pp.186–195.
Birgisson, B., Montepara, A., Romeo, E., Roque, R., Roncella, R. and Tebaldi G. (2007). Determi-
nation of fundamental tensile failure limits of mixtures. Journal of the Association of Asphalt
Pavement Technologists, Vol.76, pp.303–344.
Birgisson, B., Montepara, R.A.E., Roncella, R., Napier, J.A.L. and Tebaldi, G. (2008). Determi-
nation and prediction of crack patterns in hot mix asphalt (HMA) mixtures. Engineering
Fracture Mechanics, Vol.75, pp.664–673.
Bodner, S.R. and Partom, Y. (1975). Constitutive equations for elastic-viscoplastic strain-harden-
ing materials. Journal of Applied Mechanics, Vol.42, pp.385–389.
nd
Bonet, J. and Wood, R.D. (2008). Nonlinear continuum mechanics for finite element analysis. 2
Edition, Cambridge University Press, Cambridge.
Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. (1984). Boundary Element Techniques Theory and
Application in Engineering. Springer-Verlag, Berlin.
Brown, S.F. and Bell, C.A. (1979). The prediction of permanent deformation in asphalt pave-
ments. Proceedings, Journal of the Association of Asphalt Paving Technologists, Vol.48,
pp.438–476.
Busso, E.P., Kitano, M. and Kumazawa, T. (1994). A forward gradient time integration procedure
for an internal variable constitutive model of Sn-Pb solder. International Journal for Numerical
Methods in Engineering, Vol.37, pp.539–558.
Chan, D., Wang, X. and Morgenstern, N. (1997). Kinematic modeling of shear zone deformation.
Deformation and Progressive Failure in Geomechanics, IS-Nagoya’97, pp.389–394.
Cormeau, I.C. (1975). Numerical stability in quasi-static elasto/visco-plasticity. International
Journal for Numerical Methods in Engineering, Vol.9, pp.109–127.
Crisfield, M.A. (1997). Non-Linear Finite Element Analysis of Solids and Structures, Vol.2, Ad-
vanced Topics. John Wiley & Sons, Inc, New York.
Day, R.A. and Potts, D.M. (1994). Zero thickness interface element-numerical stability and ap-
plication. International Journal for Numerical and Analytical Methods in Geomechanics, Vol.18,
pp.689–708.
Desai, C.S., and Christian, J.T. (1977). (Editors and Contributors of Six Chapters), Numerical
Methods in Geotechnical Engineering, McGraw Hill Book Co., New York.