Page 284 - Mechanics of Asphalt Microstructure and Micromechanics
P. 284

276   Ch a p t e r  E i gh t


                 And using the Gauss theorem, one can convert Equation (8-137) into the following
              equation:
                                   Ω ∫  σ ud Ω   ∫ Γ  σ u n d Γ − ∫ Ω  σ u d Ω
                                       *
                                                               *
                                                   *
                                                               k
                                                    i
                                                             ,
                                                             ki i
                                     ki
                                                 ki
                                       k i
                                                   k
                                        ,
                                 ∫  σ ud Ω =  ∫  σ u n d Γ − ∫  σ u d Ω         (8-138)
                                                 *
                                                             *
                                     *
                                  Ω  ki  k i ,  Γ  ki  k  i  Ω  ki i ,  k
                 Therefore, the following equations can be obtained:
                           ∫  σ un d Γ − ∫  σ ud Ω   ∫  σ un d Γ − ∫  σ udΩ     (8-139)
                                 *
                                              *
                                                                   *
                                                       *
                            Γ  ki  k  i  Ω  ki i ,  k  Γ  ki  k  i  Ω  kiii ,  k
                 Or
                                   Ω ∫  (σ u *  −σ u  )d Ω   ∫  (τ u *  − u  τ * )d Γ
                                            *
                                      ki ,l  j  , ji l  k  Γ  j  j  k k         (8-140)
                 It is the same as Equation (8-135). This is actually the basis equation for BEM.
              8.8.2 Fundamental Solution
              The fundamental solution is the solution corresponding to an infinite domain subjected
              to a unit force at point x or  δ(x −  ξ)n  (the unit force in j direction). Since there are three
                                            j
              displacement components and three unit force directions, the displacement responses
                                         *
              can be represented as a tensor  u  (displacement in the ith direction due to the forces
                                         ij
              applied in the jth direction) or:
                                      b = δ x (, )ξ n (Ω *  → ∞ Γ *  →  ) ∞
                                       *
                                                       ,
                                       j        j
                 Considering the two equilibrium equations (static situations for less complexity in
              understanding the fundamental mechanisms):
                                       Du    =− ,     *  =− b *                 (8-141)
                                                b Du
                                                       ,
                                         ijkl  k li ,  j  ijkl  k li  j
                 Then
                             ∫  σ ud Ω   ∫  b ud Ω,  ∫  σ ud Ω   − ∫  b uudΩ    (8-142)
                                                                  *
                                              *
                                                      *
                                    *
                              Ω  ki i ,  k  Ω  k  k  Ω  ki i ,  k  Ω  k  k
                                 Ω ∫  *   *    Ω    Γ ∫  *  τ *
                 Equation (8-140)   (σ u j  −σ u k )d  (τ u j  − u k k )d Γ  becomes:
                                           , ji l
                                    ki
                                     ,l
                                                      j
                                   ∫ Γ (τ u * k  − τ u k ) Γd   ∫ Ω (b u j  − b u * j ) Ωd
                                                      *
                                            *
                                                      j
                                            k
                                                           j
                                      k
                                                                      ξ
                 Since  b = δ x (, )ξ  n , and considering the identity  ∫  bu dΩ =  u () , one has:
                                                             *
                       *
                                                                       n
                       j        j                          Ω  j  j   j  j
                                       j ∫
                                  u ()ξ n =  (τ  u − τ * u d ) Γ + ∫  b u dΩ
                                               *
                                                              *
                                   j       Γ  k  k  k  k  Ω  j  j               (8-143)
                 Equation (8-143) is the well-known Somigliana’s identity. It is basically the jth dis-
              placement component at point x caused by a unit force in the jth (1, 2, 3) direction.
              Considering that there are three components of the displacements and forces, Equation
              (8-143) actually has nine equations and displacements can be represented as  u ij (x ),
   279   280   281   282   283   284   285   286   287   288   289