Page 283 - Mechanics of Asphalt Microstructure and Micromechanics
P. 283

F inite Element Method and Boundar y Element Method   275



        8.8  Boundary Element Method
              8.8.1 Theoretical Basis
              The basic FEM Equation (8-18) is copied as follows:

                             ∫  Du w d  Ω = ∫  Duw n d Γ − ∫  Du wdΩ
                              Ω  ijkl  k il ,  j  Γ  ijkl  k i ,  j l  Ω  ijkl  k ki ,  j l ,  (8-18)
                 Considering the identity  u w =  ( uw ), − uw  and applying the divergence the-
                                       k i ,  j l ,  k  j l ,  i  k  j li ,
              orem, the following equation can be derived:
                              ∫  Duw dΩ =   ∫  Du w n dΓ − ∫  Du wwdΩ           (8-133)
                                                    ,
                               Ω  ijkl  k i ,  j l ,  Γ  ijkl  k  j l i  Ω  ijkl  k  jli ,
                 Replacing the second term on the right side of Equation (8-18) with the right side of
              8-133, the following equation can be derived:
                             Ω ∫  D ( u w −  u w ) d Ω = ∫  D ( u w n −  u wn dΓ  (8-134)
                                                                     )
                                    ,
                                                                  ,
                                ijkl  k il  j  k  j li ,  Γ  ijkl  k i ,  j l  k k  j l i
                 If one selects the fundamental solution (corresponding to the displacement field
              caused by a concentrated force) as the weighting function w = u* and denotes the cor-
              responding field variables as s *, t *, e *, and so on, and considering:
                 Du    = σ   Dw     = σ *   and the stress-surface traction relationship, one has:
                   ijkl  k il ,  ki l ,  ijkl  j li  ji l ,
                                  ,
                                Ω ∫  D ( u w −  u w ) d Ω =  Ω ∫  (σ ki l , u −σ udΩ
                                                               *
                                                           *
                                                                  )
                                                                 k
                                                                l
                                     k il
                                      ,
                                                               ji,l
                                                           j
                                              j li
                                            k
                                              ,
                                         j
                                  ijkl
                 And
                                   Ω ∫  (σ u *  −σ u  )d Ω    Γ ∫  (τ u  *  − u τ * )d Γ
                                            *
                                      ki ,l  j  , ji l  k  j  j  k k            (8-135)
                 It can be conveniently proved that this is actually Betti’s reciprocal work principle,
              which is concerned with the two states of stress and strain within a domain (Ω, Γ) con-
              tained in a large domain (Ω*, Γ*). Betti’s principle states that the virtual work (virtual
              strain energy) done by s ki  over e * ki  is equal to the virtual work done by s * ki  over e ki , or:
                                             σε =  ε σ *                        (8-136)
                                                *
                                              ki ki  ki  ki
                 This can be conveniently proved as:
                                       σ =  D  ε and  σ =  D  ε *
                                                     *
                                        ki   ijkl jl  ki  ijkl jl
                 And thus one has:
                                          Ω ∫  σε d Ω    Ω ∫  σε d Ω
                                                      *
                                              *
                                            ki ki
                                                      ki ki
                                         Ω ∫  σ ud Ω    Ω ∫  σ ud Ω             (8-137)
                                             *
                                                      *
                 or                        ki  k i ,  ki  k i ,
                 By identities  σ u =  ( σ u ) − σ u and  σ u =  σ (  * k ki u ) −σ * ki i ,  u k
                                              *
                               *
                                      *
                                                    *
                                                             k i
                                                      ,
                               k i
                                           ki i
                                ,
                                    ki
                                      k i
                                                    ki
                                                      k i
                             ki
                                            ,
                                              k
   278   279   280   281   282   283   284   285   286   287   288