Page 93 - Membranes for Industrial Wastewater Recovery and Re-Use
P. 93

Mtmbrane tcrhnology  73

             Judd,  S.J.  and  Hillis,  P.  (2001). Coagulation  pretreatment  for  crossflow
           microfiltration ofupland waters. Wat. Res., 35,2895-2904.
             Kesting, R.E. (1989). The nature of pores in integrally skinned phase inversion
           membranes. In Matsuura, T. and Sourijan, S. (eds.) Advances in reverse osmosis
           and ultrafiltration. National Research Council of Canada, pp. 1-1 3.
             Kim, S. and Park, H. (1999). Prediction of critical flux conditions in crossflow
           microfiltration  using  a  concentration  polarisation  model.  Proc.  Membrane
           Technology in Environmental Management, Tokyo, 1-4 Nov., pp. 186-193.
             Knoell, T.,  Safarik, J.,  Cormack, T.,  Riley, R.,  Lin, S.W.  and Ridgeway, H.
           (1 999).  Biofouling  potentials  of  microporous  polysulphone  membranes
           containing  a  sulphonated  polyether-ethersulphone  polyethersulphone  block
           copolymer:  correlation  of  membrane  surface  properties  with  bacterial
           attachment. J, MembraneSci., 157,117-138.
             Krauth, K.H. and Staab, K.F. (1993). Pressurized bioreactor with membrane
           filtration for wastewater treatment. Wat. Res. 27,405-41 1.
             Kwon,  D.Y.  and  Vigneswaran,  S. (1998). Influence  of  particle  size  and
           surface charge on critical flux of  crossflow microfiltration. Wat. Sci. Technol.,
           38,481-488.
             Kwon,  D.Y.,  Vigneswaran,  S.,  Pane,  A.G.  and  Ben  Aim,  R.  (2000).
           Experimental  determination  of  critical  flux  in  cross  flow  microfiltration.
           Separationand Purification Tech., 19,169-181.
             LkvEque, J.A.  (1928). Les lois de la transmission de chaleur par convection.
           Ann. Mines, 13,305-382.
             Lonsdale, H.K.,  Merten, U.  and  Riley R.L.  (1965). Transport properties of
           cellulose acetate osmotic membranes. J. Appl. Polym. Sci., 9,1341.
             Matsuura, T.  and Sourirajan, S. (1981). Reverse osmosis transport through
           capillary pores under the influence of  surface forces. Ind. Eng. Chem. Process
           Des. Dev., 20,273.
             Mercier, M., Fonade, C. and Lafforgue-Delrnorme, C.  (1997). How slug flow
           can enhance the ultrafiltration flux of mineraI tubular membranes. J. Membrane
           Sci., 128,103.
             Nunes,  S.P.  and  Peinemann,  K.V.  (2001). Membrane  technology  in  the
           chemical industry. Wiley, Weinheim.
             Ould-Dris, A., Jaffrin. M.Y..  Si-Hassen, D. and Neggaz, Y. (2000). Effect of cake
           thickness  and  particle  polydispersity  on  prediction  of  permeate  flux  in
           microfiltration of particulate suspensions by a hydrodynamic diffusion model. J.
           Membrane Sci., 164,211-227.
             Porter,  M.C.   (1 9 72).  Concentration  polarisation  with  membrane
           ultrafiltration. Ind. Eng. Chem. Prod. Res. Dev., 11,233-248.
             Ridgeway, H.F. (1 988). Microbial adhesion and biofouling on reverse osmosis
           membranes. In Parekh, B.S.  (ed.) Reverse osmosis technology. Marcel Dekker,
           New York. pp. 429-481.
             Rodgers, V.G.J.  and  Sparks, H.E.  (1993). Effects  of  solution  properties  on
           polarization  redevelopment  and  flux  in  pressure  pulsed  ultrafiltration.  J.
           Membrane Sci., 78,163.
   88   89   90   91   92   93   94   95   96   97   98