Page 92 - Membranes for Industrial Wastewater Recovery and Re-Use
P. 92
72 Membranesfor Industrial Wastewater Recovery and Re-use
Davis, R.H. and Sherwood, J.D. (1990). A similarity solution for steady-state
crossflow microfiltration. Chem. Eng. Sci., 45,3203-3209.
Defrance, L. and Jaffrin, M.Y. (1999a). Reversibility of activated sludge
filtration. J. Membrane Sci., 152,203-210.
Defrance, L. and Jaffrin, M.Y. (1999b). Reversibility of fouling formed in
activated sludge filtration. J. Membrane Sci., 157, 73-84.
Drew, D.A., Schonberg, J.A. and Belfort, G. (1991). Lateral inertial migration
of a small sphere in fast laminar flow through a membrane duct. Chem. Eng. Sci.,
46,3219-3244.
Ecstein, E.C., Bailey, P.G. and Shapiro, A.H. (1977). Self-diffusion of particles
in shear flow of suspension. J. PluidMech., 79.191-208.
Fane, A.G. (1986). Ultrafiltration: factors influencing flux and rejection. Prog.
Filt. Sep., 4,101-179.
Field, R.W., Wu, D., Howell, J.A. and Gupta, B.B. (1 99 5). Critical flux concept
for microfiltration fouling. J. Membrane Sci.. 100,2 59-2 72.
Flemming, H.C. (1992). Mechanistic aspects of reverse osmosis membrane
biofouling and prevention. In Amjad, Z. (ed.) Reverse osmosis membrane
technology, water chemistry and industrial applications. Nostrand Reinhold,
New York.
Ghosh R. and Cui Z.F. (1999). Mass transfer in gas-sparged ultrafiltration:
upward slug flow in tubular membranes. J. Membrane Sci.. 162,91-102.
Grace, H.P. (1956). Resistance and compressibility of filter cakes. Chem. Eng.
Prog.,49,303-318.
Graham, S.I., Reitx, R.L. and Hickman, C.E. (1989). Improving reverse
osmosis performance through periodic cleaning. Desalination, 74,113-124.
Green, G. and Belfort, G. (1980). Fouling of ultrafiltration membranes: lateral
migration and the particle trajectory model. Desalination, 3 5,129-147.
Guiver, M. D., Black, P., Tam, C. M. and Deslandes, Y. (1993). Functionalised
PSU membranes by heterogeneous lithiation. J. Appl. Polymer Sci., 48,1597.
Gupta, B.B., Banplain, P. and Jaffrin, M.Y. (1992). Permeate flux
enhancement by pressure and flow pulsations in microfiltration with mineral
membranes. J. Membrane Sci., 70,257.
Gupta, B.B., Ding, L.H. and Jaffrin, M.Y. (1985). In Nose, Y., Kjellstrand, C.
and Ivanovich, P. (eds.) Progress in Artificial Organs. ISAO Press, Cleveland,
p. 891.
Gupta, B.B., Howell, J. A., Wu, D. and Field, R.W. (1995). Critical flux concept
for microfiltration fouling. J. Membrane Sci., 100,259-2 72.
Hermia, J. (1 982). Constant pressure blocking filtration laws: application to
power-law non-Newtonian fluids. Trans. Inst. Chem. Eng., 60,183.
Howell, J.A. (1 99 5). Subcritical flux operation of microfiltration. J. Membrane
Sci., 107,165-1 71.
Ishiguro, K., Imai., K. and Sawada, S. (1994). Effects of biological treatment
conditions on permeate flux of UF membrane in a membrane/activated sludge
wastewater treatement system. Desalination, 98,119-1 2 6.
IUPAC (1985). Reportingphysisorption data. Pure Appl. Chem., 57,603.