Page 511 - Modelling in Transport Phenomena A Conceptual Approach
P. 511

Appendix A



           Mat hemat ical Preliminaries







           A.l  THE CYLINDRICAL AND SPHERICAL
                   COORDINATE SYSTEMS

           For  cylindrical coordinates,  the variables (r, 8, z) are related  to the rectangular
           coordinates (x,  y, z) as follows:
                                   x=rcos~  r=Jw                            (A.1-1)
                                   y = r sin 8   0 = arctan(y/x)            (A.l-2)
                                   z=x         z=z                          (A. 1-3)
           The ranges of  the variables (r, 0, z) are

                           Olrlcu       0<0<2.rr      -oo<z<oo

              For  spherical coordinates the variables (r, B,4) are related to the rectangular
           coordinates (x, y, z) as follows:

                             x=rsinBcos4      r= ,/x2+y2+z2                 (A.1-4)
                             y = r sin e sin 4   e = arctan (,/~/z)         (A.l-5)
                             z = rcose       4 = arctan(y/x)                (A.l-6)

           The ranges of  the variables (r, 8,d) are

                             O<r<cu       05e<.rr     054<2~
              The cylindrical and the spherical coordinate systems axe shown in Figure A.l.
           The differential volunaes in these coordinate systems are given by
                              dV= {  r drdedz       cylindrical             (A.l-7)

                                     r2 sin 8 drddd4  spherical

                                             491
   506   507   508   509   510   511   512   513   514   515   516